You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

96 lines
4.2 KiB

11 months ago
11 months ago
  1. from typing import Dict, Optional
  2. from ray.rllib.env.env_context import EnvContext
  3. from ray.rllib.policy import Policy
  4. from ray.rllib.utils.typing import EnvType, PolicyID
  5. from ray.rllib.algorithms.algorithm import Algorithm
  6. from ray.rllib.env.base_env import BaseEnv
  7. from ray.rllib.evaluation import RolloutWorker
  8. from ray.rllib.evaluation.episode import Episode
  9. from ray.rllib.evaluation.episode_v2 import EpisodeV2
  10. from ray.rllib.algorithms.callbacks import DefaultCallbacks, make_multi_callbacks
  11. import matplotlib.pyplot as plt
  12. import tensorflow as tf
  13. class ShieldInfoCallback(DefaultCallbacks):
  14. def on_episode_start(self) -> None:
  15. file_writer = tf.summary.create_file_writer(log_dir)
  16. with file_writer.as_default():
  17. tf.summary.text("first_text", "testing", step=0)
  18. def on_episode_step(self) -> None:
  19. pass
  20. class MyCallbacks(DefaultCallbacks):
  21. def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode, env_index, **kwargs) -> None:
  22. with open(f"{worker.io_context.log_dir}/testing.txt", "a") as file:
  23. file.write("first_text_from_episode_start\n")
  24. # print(F"Epsiode started Environment: {base_env.get_sub_environments()}")
  25. env = base_env.get_sub_environments()[0]
  26. episode.user_data["count"] = 0
  27. episode.user_data["ran_into_lava"] = []
  28. episode.user_data["goals_reached"] = []
  29. episode.user_data["ran_into_adversary"] = []
  30. episode.hist_data["ran_into_lava"] = []
  31. episode.hist_data["goals_reached"] = []
  32. episode.hist_data["ran_into_adversary"] = []
  33. # print("On episode start print")
  34. # print(env.printGrid())
  35. # print(worker)
  36. # print(env.action_space.n)
  37. # print(env.actions)
  38. # print(env.mission)
  39. # print(env.observation_space)
  40. # plt.imshow(img)
  41. # plt.show()
  42. def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None:
  43. episode.user_data["count"] = episode.user_data["count"] + 1
  44. env = base_env.get_sub_environments()[0]
  45. # print(env.printGrid())
  46. if hasattr(env, "adversaries"):
  47. for adversary in env.adversaries.values():
  48. if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]:
  49. print(F"Adversary ran into agent. Adversary {adversary.cur_pos}, Agent {env.agent_pos}")
  50. # assert False
  51. def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies, episode, env_index, **kwargs) -> None:
  52. # print(F"Epsiode end Environment: {base_env.get_sub_environments()}")
  53. env = base_env.get_sub_environments()[0]
  54. agent_tile = env.grid.get(env.agent_pos[0], env.agent_pos[1])
  55. ran_into_adversary = False
  56. if hasattr(env, "adversaries"):
  57. adversaries = env.adversaries.values()
  58. for adversary in adversaries:
  59. if adversary.cur_pos[0] == env.agent_pos[0] and adversary.cur_pos[1] == env.agent_pos[1]:
  60. ran_into_adversary = True
  61. break
  62. episode.user_data["goals_reached"].append(agent_tile is not None and agent_tile.type == "goal")
  63. episode.user_data["ran_into_lava"].append(agent_tile is not None and agent_tile.type == "lava")
  64. episode.user_data["ran_into_adversary"].append(ran_into_adversary)
  65. episode.custom_metrics["reached_goal"] = agent_tile is not None and agent_tile.type == "goal"
  66. episode.custom_metrics["ran_into_lava"] = agent_tile is not None and agent_tile.type == "lava"
  67. episode.custom_metrics["ran_into_adversary"] = ran_into_adversary
  68. #print("On episode end print")
  69. # print(env.printGrid())
  70. episode.hist_data["goals_reached"] = episode.user_data["goals_reached"]
  71. episode.hist_data["ran_into_lava"] = episode.user_data["ran_into_lava"]
  72. episode.hist_data["ran_into_adversary"] = episode.user_data["ran_into_adversary"]
  73. def on_evaluate_start(self, *, algorithm: Algorithm, **kwargs) -> None:
  74. print("Evaluate Start")
  75. def on_evaluate_end(self, *, algorithm: Algorithm, evaluation_metrics: dict, **kwargs) -> None:
  76. print("Evaluate End")