|
|
import gymnasium as gym import minigrid
from ray.tune import register_env from ray.rllib.algorithms.ppo import PPOConfig from ray.tune.logger import pretty_print, UnifiedLogger, CSVLogger from ray.rllib.models import ModelCatalog
from torch_action_mask_model import TorchActionMaskModel from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig from shieldhandlers import MiniGridShieldHandler, create_shield_query
from callbacks import MyCallbacks
from torch.utils.tensorboard import SummaryWriter
def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" shielding = config.get("shielding", False) shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding)
env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env
def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel )
def ppo(args): register_minigrid_shielding_env(args) config = (PPOConfig() .rollouts(num_rollout_workers=args.workers) .resources(num_gpus=0) .environment( env="mini-grid-shielding", env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) .framework("torch") .callbacks(MyCallbacks) .evaluation(evaluation_config={ "evaluation_interval": 1, "evaluation_duration": 10, "evaluation_num_workers":1, "env": "mini-grid-shielding", "env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}}) .rl_module(_enable_rl_module_api = False) .debugging(logger_config={ "type": UnifiedLogger, "logdir": create_log_dir(args) }) .training(_enable_learner_api=False ,model={ "custom_model": "shielding_model" })) algo =( config.build() ) evaluations = args.evaluations for i in range(evaluations): algo.train() if i % 5 == 0: algo.save() eval_log_dir = F"{create_log_dir(args)}-eval" writer = SummaryWriter(log_dir=eval_log_dir) csv_logger = CSVLogger(config=config, logdir=eval_log_dir) for i in range(evaluations): eval_result = algo.evaluate() print(pretty_print(eval_result)) print(eval_result) # logger.on_result(eval_result)
csv_logger.on_result(eval_result) evaluation = eval_result['evaluation'] epsiode_reward_mean = evaluation['episode_reward_mean'] episode_len_mean = evaluation['episode_len_mean'] print(epsiode_reward_mean) writer.add_scalar("evaluation/episode_reward_mean", epsiode_reward_mean, i) writer.add_scalar("evaluation/episode_len_mean", episode_len_mean, i)
writer.close()
def main(): import argparse args = parse_arguments(argparse)
ppo(args)
if __name__ == '__main__': main()
|