|
|
import gymnasium as gym import minigrid
from ray.tune import register_env from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.algorithms.dqn.dqn import DQNConfig from ray.tune.logger import pretty_print from ray.rllib.models import ModelCatalog
from ray.rllib.algorithms.algorithm import Algorithm
from torch_action_mask_model import TorchActionMaskModel from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper from helpers import parse_arguments, create_log_dir, ShieldingConfig from shieldhandlers import MiniGridShieldHandler, create_shield_query from callbacks import MyCallbacks
from ray.tune.logger import TBXLogger import imageio
import matplotlib.pyplot as plt
def shielding_env_creater(config): name = config.get("name", "MiniGrid-LavaSlipperyS12-v2") framestack = config.get("framestack", 4) args = config.get("args", None) args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack ) return env
def register_minigrid_shielding_env(args): env_name = "mini-grid-shielding" register_env(env_name, shielding_env_creater)
ModelCatalog.register_custom_model( "shielding_model", TorchActionMaskModel ) import argparse args = parse_arguments(argparse) register_minigrid_shielding_env(args) # Use the Algorithm's `from_checkpoint` utility to get a new algo instance # that has the exact same state as the old one, from which the checkpoint was # created in the first place: path_to_checkpoint = '/home/tknoll/Documents/Projects/log_results/PPO-shielding:full-evaluations:10-steps:20000-env:MiniGrid-LavaSlipperyS12-v2/PPO/PPO_mini-grid-shielding_8cd74_00000_0_2023-09-13_14-10-38/checkpoint_000005'
algo = Algorithm.from_checkpoint(path_to_checkpoint)
# Continue training. name = "MiniGrid-LavaSlipperyS12-v2" shield_creator = MiniGridShieldHandler(F"./{args.grid_path}_1.txt", args.grid_to_prism_binary_path, F"./{args.prism_path}_1.prism", args.formula)
env = gym.make(name) env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query) # env = minigrid.wrappers.ImgObsWrapper(env) # env = ImgObsWrapper(env) env = OneHotShieldingWrapper(env, 0, framestack=4 )
episode_reward = 0 terminated = truncated = False
obs, info = env.reset() i = 0 filenames = [] while not terminated and not truncated: action = algo.compute_single_action(obs) obs, reward, terminated, truncated, info = env.step(action) episode_reward += reward filename = F"./frames/{i}.jpg" img = env.get_frame() plt.imsave(filename, img) filenames.append(filename) i = i + 1 import imageio images = [] for filename in filenames: images.append(imageio.imread(filename)) imageio.mimsave('./movie.gif', images)
|