|
|
/*
pybind11/std_bind.h: Binding generators for STL data types
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#pragma once
#include "common.h"
#include "operators.h"
#include <algorithm>
#include <sstream>
NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail)
/* SFINAE helper class used by 'is_comparable */ template <typename T> struct container_traits { template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*); template <typename T2> static std::false_type test_comparable(...); template <typename T2> static std::true_type test_value(typename T2::value_type *); template <typename T2> static std::false_type test_value(...); template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *); template <typename T2> static std::false_type test_pair(...);
static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value; static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value; static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value; static constexpr const bool is_element = !is_pair && !is_vector; };
/* Default: is_comparable -> std::false_type */ template <typename T, typename SFINAE = void> struct is_comparable : std::false_type { };
/* For non-map data structures, check whether operator== can be instantiated */ template <typename T> struct is_comparable< T, enable_if_t<container_traits<T>::is_element && container_traits<T>::is_comparable>> : std::true_type { };
/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */ template <typename T> struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> { static constexpr const bool value = is_comparable<typename T::value_type>::value; };
/* For pairs, recursively check the two data types */ template <typename T> struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> { static constexpr const bool value = is_comparable<typename T::first_type>::value && is_comparable<typename T::second_type>::value; };
/* Fallback functions */ template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { } template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { } template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { } template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }
template<typename Vector, typename Class_> void vector_if_copy_constructible(enable_if_t< std::is_copy_constructible<Vector>::value && std::is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
cl.def(init<const Vector &>(), "Copy constructor"); }
template<typename Vector, typename Class_> void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) { using T = typename Vector::value_type;
cl.def(self == self); cl.def(self != self);
cl.def("count", [](const Vector &v, const T &x) { return std::count(v.begin(), v.end(), x); }, arg("x"), "Return the number of times ``x`` appears in the list" );
cl.def("remove", [](Vector &v, const T &x) { auto p = std::find(v.begin(), v.end(), x); if (p != v.end()) v.erase(p); else throw value_error(); }, arg("x"), "Remove the first item from the list whose value is x. " "It is an error if there is no such item." );
cl.def("__contains__", [](const Vector &v, const T &x) { return std::find(v.begin(), v.end(), x) != v.end(); }, arg("x"), "Return true the container contains ``x``" ); }
// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_> void vector_modifiers(enable_if_t<std::is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using DiffType = typename Vector::difference_type;
cl.def("append", [](Vector &v, const T &value) { v.push_back(value); }, arg("x"), "Add an item to the end of the list");
cl.def("__init__", [](Vector &v, iterable it) { new (&v) Vector(); try { v.reserve(len(it)); for (handle h : it) v.push_back(h.cast<T>()); } catch (...) { v.~Vector(); throw; } });
cl.def("extend", [](Vector &v, const Vector &src) { v.reserve(v.size() + src.size()); v.insert(v.end(), src.begin(), src.end()); }, arg("L"), "Extend the list by appending all the items in the given list" );
cl.def("insert", [](Vector &v, SizeType i, const T &x) { v.insert(v.begin() + (DiffType) i, x); }, arg("i") , arg("x"), "Insert an item at a given position." );
cl.def("pop", [](Vector &v) { if (v.empty()) throw index_error(); T t = v.back(); v.pop_back(); return t; }, "Remove and return the last item" );
cl.def("pop", [](Vector &v, SizeType i) { if (i >= v.size()) throw index_error(); T t = v[i]; v.erase(v.begin() + (DiffType) i); return t; }, arg("i"), "Remove and return the item at index ``i``" );
cl.def("__setitem__", [](Vector &v, SizeType i, const T &t) { if (i >= v.size()) throw index_error(); v[i] = t; } );
/// Slicing protocol
cl.def("__getitem__", [](const Vector &v, slice slice) -> Vector * { size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw error_already_set();
Vector *seq = new Vector(); seq->reserve((size_t) slicelength);
for (size_t i=0; i<slicelength; ++i) { seq->push_back(v[start]); start += step; } return seq; }, arg("s"), "Retrieve list elements using a slice object" );
cl.def("__setitem__", [](Vector &v, slice slice, const Vector &value) { size_t start, stop, step, slicelength; if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw error_already_set();
if (slicelength != value.size()) throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) { v[start] = value[i]; start += step; } }, "Assign list elements using a slice object" );
cl.def("__delitem__", [](Vector &v, SizeType i) { if (i >= v.size()) throw index_error(); v.erase(v.begin() + DiffType(i)); }, "Delete the list elements at index ``i``" );
cl.def("__delitem__", [](Vector &v, slice slice) { size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw error_already_set();
if (step == 1 && false) { v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength)); } else { for (size_t i = 0; i < slicelength; ++i) { v.erase(v.begin() + DiffType(start)); start += step - 1; } } }, "Delete list elements using a slice object" );
}
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using vector_needs_copy = negation< std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;
// The usual case: access and iterate by reference
template <typename Vector, typename Class_> void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using ItType = typename Vector::iterator;
cl.def("__getitem__", [](Vector &v, SizeType i) -> T & { if (i >= v.size()) throw index_error(); return v[i]; }, return_value_policy::reference_internal // ref + keepalive
);
cl.def("__iter__", [](Vector &v) { return make_iterator< return_value_policy::reference_internal, ItType, ItType, T&>( v.begin(), v.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); }
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_> void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using ItType = typename Vector::iterator; cl.def("__getitem__", [](const Vector &v, SizeType i) -> T { if (i >= v.size()) throw index_error(); return v[i]; } );
cl.def("__iter__", [](Vector &v) { return make_iterator< return_value_policy::copy, ItType, ItType, T>( v.begin(), v.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); }
template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name) -> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) { using size_type = typename Vector::size_type;
cl.def("__repr__", [name](Vector &v) { std::ostringstream s; s << name << '['; for (size_type i=0; i < v.size(); ++i) { s << v[i]; if (i != v.size() - 1) s << ", "; } s << ']'; return s.str(); }, "Return the canonical string representation of this list." ); }
// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void> struct vector_has_data_and_format : std::false_type {}; template <typename Vector> struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};
// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args> enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_& cl) { using T = typename Vector::value_type;
static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
format_descriptor<T>::format();
cl.def_buffer([](Vector& v) -> buffer_info { return buffer_info(v.data(), sizeof(T), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)}); });
cl.def("__init__", [](Vector& vec, buffer buf) { auto info = buf.request(); if (info.ndim != 1 || info.strides[0] <= 0 || info.strides[0] % sizeof(T)) throw type_error("Only valid 1D buffers can be copied to a vector"); if (!detail::compare_buffer_info<T>::compare(info) || sizeof(T) != info.itemsize) throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")"); new (&vec) Vector(); vec.reserve(info.shape[0]); T *p = static_cast<T*>(info.ptr); auto step = info.strides[0] / sizeof(T); T *end = p + info.shape[0] * step; for (; p < end; p += step) vec.push_back(*p); });
return; }
template <typename Vector, typename Class_, typename... Args> enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}
NAMESPACE_END(detail)
//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args> class_<Vector, holder_type> bind_vector(module &m, std::string const &name, Args&&... args) { using Class_ = class_<Vector, holder_type>;
Class_ cl(m, name.c_str(), std::forward<Args>(args)...);
// Declare the buffer interface if a buffer_protocol() is passed in
detail::vector_buffer<Vector, Class_, Args...>(cl);
cl.def(init<>());
// Register copy constructor (if possible)
detail::vector_if_copy_constructible<Vector, Class_>(cl);
// Register comparison-related operators and functions (if possible)
detail::vector_if_equal_operator<Vector, Class_>(cl);
// Register stream insertion operator (if possible)
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
// Modifiers require copyable vector value type
detail::vector_modifiers<Vector, Class_>(cl);
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
detail::vector_accessor<Vector, Class_>(cl);
cl.def("__bool__", [](const Vector &v) -> bool { return !v.empty(); }, "Check whether the list is nonempty" );
cl.def("__len__", &Vector::size);
#if 0
// C++ style functions deprecated, leaving it here as an example
cl.def(init<size_type>());
cl.def("resize", (void (Vector::*) (size_type count)) & Vector::resize, "changes the number of elements stored");
cl.def("erase", [](Vector &v, SizeType i) { if (i >= v.size()) throw index_error(); v.erase(v.begin() + i); }, "erases element at index ``i``");
cl.def("empty", &Vector::empty, "checks whether the container is empty"); cl.def("size", &Vector::size, "returns the number of elements"); cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end"); cl.def("pop_back", &Vector::pop_back, "removes the last element");
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements"); cl.def("reserve", &Vector::reserve, "reserves storage"); cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage"); cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
cl.def("clear", &Vector::clear, "clears the contents"); cl.def("swap", &Vector::swap, "swaps the contents");
cl.def("front", [](Vector &v) { if (v.size()) return v.front(); else throw index_error(); }, "access the first element");
cl.def("back", [](Vector &v) { if (v.size()) return v.back(); else throw index_error(); }, "access the last element ");
#endif
return cl; }
//
// std::map, std::unordered_map
//
NAMESPACE_BEGIN(detail)
/* Fallback functions */ template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { } template <typename, typename, typename... Args> void map_assignment(const Args &...) { }
// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_> void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type;
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) { auto it = m.find(k); if (it != m.end()) it->second = v; else m.emplace(k, v); } ); }
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_> void map_assignment(enable_if_t< !std::is_copy_assignable<typename Map::mapped_type>::value && std::is_copy_constructible<typename Map::mapped_type>::value, Class_> &cl) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type;
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) { // We can't use m[k] = v; because value type might not be default constructable
auto r = m.emplace(k, v); if (!r.second) { // value type is not copy assignable so the only way to insert it is to erase it first...
m.erase(r.first); m.emplace(k, v); } } ); }
template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name) -> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {
cl.def("__repr__", [name](Map &m) { std::ostringstream s; s << name << '{'; bool f = false; for (auto const &kv : m) { if (f) s << ", "; s << kv.first << ": " << kv.second; f = true; } s << '}'; return s.str(); }, "Return the canonical string representation of this map." ); }
NAMESPACE_END(detail)
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args> class_<Map, holder_type> bind_map(module &m, const std::string &name, Args&&... args) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type; using Class_ = class_<Map, holder_type>;
Class_ cl(m, name.c_str(), std::forward<Args>(args)...);
cl.def(init<>());
// Register stream insertion operator (if possible)
detail::map_if_insertion_operator<Map, Class_>(cl, name);
cl.def("__bool__", [](const Map &m) -> bool { return !m.empty(); }, "Check whether the map is nonempty" );
cl.def("__iter__", [](Map &m) { return make_key_iterator(m.begin(), m.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ );
cl.def("items", [](Map &m) { return make_iterator(m.begin(), m.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ );
cl.def("__getitem__", [](Map &m, const KeyType &k) -> MappedType & { auto it = m.find(k); if (it == m.end()) throw key_error(); return it->second; }, return_value_policy::reference_internal // ref + keepalive
);
// Assignment provided only if the type is copyable
detail::map_assignment<Map, Class_>(cl);
cl.def("__delitem__", [](Map &m, const KeyType &k) { auto it = m.find(k); if (it == m.end()) throw key_error(); return m.erase(it); } );
cl.def("__len__", &Map::size);
return cl; }
NAMESPACE_END(pybind11)
|