|
|
/*
pybind11/numpy.h: Basic NumPy support, vectorize() wrapper
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#pragma once
#include "pybind11.h"
#include "complex.h"
#include <numeric>
#include <algorithm>
#include <array>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <string>
#include <initializer_list>
#include <functional>
#include <utility>
#include <typeindex>
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
/* This will be true on all flat address space platforms and allows us to reduce the
whole npy_intp / size_t / Py_intptr_t business down to just size_t for all size and dimension types (e.g. shape, strides, indexing), instead of inflicting this upon the library user. */ static_assert(sizeof(size_t) == sizeof(Py_intptr_t), "size_t != Py_intptr_t");
NAMESPACE_BEGIN(pybind11)
class array; // Forward declaration
NAMESPACE_BEGIN(detail) template <typename type, typename SFINAE = void> struct npy_format_descriptor;
struct PyArrayDescr_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char flags; int type_num; int elsize; int alignment; char *subarray; PyObject *fields; PyObject *names; };
struct PyArray_Proxy { PyObject_HEAD char *data; int nd; ssize_t *dimensions; ssize_t *strides; PyObject *base; PyObject *descr; int flags; };
struct PyVoidScalarObject_Proxy { PyObject_VAR_HEAD char *obval; PyArrayDescr_Proxy *descr; int flags; PyObject *base; };
struct numpy_type_info { PyObject* dtype_ptr; std::string format_str; };
struct numpy_internals { std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;
numpy_type_info *get_type_info(const std::type_info& tinfo, bool throw_if_missing = true) { auto it = registered_dtypes.find(std::type_index(tinfo)); if (it != registered_dtypes.end()) return &(it->second); if (throw_if_missing) pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name()); return nullptr; }
template<typename T> numpy_type_info *get_type_info(bool throw_if_missing = true) { return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing); } };
inline PYBIND11_NOINLINE void load_numpy_internals(numpy_internals* &ptr) { ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals"); }
inline numpy_internals& get_numpy_internals() { static numpy_internals* ptr = nullptr; if (!ptr) load_numpy_internals(ptr); return *ptr; }
struct npy_api { enum constants { NPY_ARRAY_C_CONTIGUOUS_ = 0x0001, NPY_ARRAY_F_CONTIGUOUS_ = 0x0002, NPY_ARRAY_OWNDATA_ = 0x0004, NPY_ARRAY_FORCECAST_ = 0x0010, NPY_ARRAY_ENSUREARRAY_ = 0x0040, NPY_ARRAY_ALIGNED_ = 0x0100, NPY_ARRAY_WRITEABLE_ = 0x0400, NPY_BOOL_ = 0, NPY_BYTE_, NPY_UBYTE_, NPY_SHORT_, NPY_USHORT_, NPY_INT_, NPY_UINT_, NPY_LONG_, NPY_ULONG_, NPY_LONGLONG_, NPY_ULONGLONG_, NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_, NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_, NPY_OBJECT_ = 17, NPY_STRING_, NPY_UNICODE_, NPY_VOID_ };
static npy_api& get() { static npy_api api = lookup(); return api; }
bool PyArray_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArray_Type_); } bool PyArrayDescr_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArrayDescr_Type_); }
PyObject *(*PyArray_DescrFromType_)(int); PyObject *(*PyArray_NewFromDescr_) (PyTypeObject *, PyObject *, int, Py_intptr_t *, Py_intptr_t *, void *, int, PyObject *); PyObject *(*PyArray_DescrNewFromType_)(int); PyObject *(*PyArray_NewCopy_)(PyObject *, int); PyTypeObject *PyArray_Type_; PyTypeObject *PyVoidArrType_Type_; PyTypeObject *PyArrayDescr_Type_; PyObject *(*PyArray_DescrFromScalar_)(PyObject *); PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *); int (*PyArray_DescrConverter_) (PyObject *, PyObject **); bool (*PyArray_EquivTypes_) (PyObject *, PyObject *); int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, char, PyObject **, int *, Py_ssize_t *, PyObject **, PyObject *); PyObject *(*PyArray_Squeeze_)(PyObject *); int (*PyArray_SetBaseObject_)(PyObject *, PyObject *); private: enum functions { API_PyArray_Type = 2, API_PyArrayDescr_Type = 3, API_PyVoidArrType_Type = 39, API_PyArray_DescrFromType = 45, API_PyArray_DescrFromScalar = 57, API_PyArray_FromAny = 69, API_PyArray_NewCopy = 85, API_PyArray_NewFromDescr = 94, API_PyArray_DescrNewFromType = 9, API_PyArray_DescrConverter = 174, API_PyArray_EquivTypes = 182, API_PyArray_GetArrayParamsFromObject = 278, API_PyArray_Squeeze = 136, API_PyArray_SetBaseObject = 282 };
static npy_api lookup() { module m = module::import("numpy.core.multiarray"); auto c = m.attr("_ARRAY_API"); #if PY_MAJOR_VERSION >= 3
void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL); #else
void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr()); #endif
npy_api api; #define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
DECL_NPY_API(PyArray_Type); DECL_NPY_API(PyVoidArrType_Type); DECL_NPY_API(PyArrayDescr_Type); DECL_NPY_API(PyArray_DescrFromType); DECL_NPY_API(PyArray_DescrFromScalar); DECL_NPY_API(PyArray_FromAny); DECL_NPY_API(PyArray_NewCopy); DECL_NPY_API(PyArray_NewFromDescr); DECL_NPY_API(PyArray_DescrNewFromType); DECL_NPY_API(PyArray_DescrConverter); DECL_NPY_API(PyArray_EquivTypes); DECL_NPY_API(PyArray_GetArrayParamsFromObject); DECL_NPY_API(PyArray_Squeeze); DECL_NPY_API(PyArray_SetBaseObject); #undef DECL_NPY_API
return api; } };
inline PyArray_Proxy* array_proxy(void* ptr) { return reinterpret_cast<PyArray_Proxy*>(ptr); }
inline const PyArray_Proxy* array_proxy(const void* ptr) { return reinterpret_cast<const PyArray_Proxy*>(ptr); }
inline PyArrayDescr_Proxy* array_descriptor_proxy(PyObject* ptr) { return reinterpret_cast<PyArrayDescr_Proxy*>(ptr); }
inline const PyArrayDescr_Proxy* array_descriptor_proxy(const PyObject* ptr) { return reinterpret_cast<const PyArrayDescr_Proxy*>(ptr); }
inline bool check_flags(const void* ptr, int flag) { return (flag == (array_proxy(ptr)->flags & flag)); }
template <typename T> struct is_std_array : std::false_type { }; template <typename T, size_t N> struct is_std_array<std::array<T, N>> : std::true_type { }; template <typename T> struct is_complex : std::false_type { }; template <typename T> struct is_complex<std::complex<T>> : std::true_type { };
template <typename T> using is_pod_struct = all_of< std::is_pod<T>, // since we're accessing directly in memory we need a POD type
satisfies_none_of<T, std::is_reference, std::is_array, is_std_array, std::is_arithmetic, is_complex, std::is_enum> >;
template <size_t Dim = 0, typename Strides> size_t byte_offset_unsafe(const Strides &) { return 0; } template <size_t Dim = 0, typename Strides, typename... Ix> size_t byte_offset_unsafe(const Strides &strides, size_t i, Ix... index) { return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...); }
/** Proxy class providing unsafe, unchecked const access to array data. This is constructed through
* the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims` * will be -1 for dimensions determined at runtime. */ template <typename T, ssize_t Dims> class unchecked_reference { protected: static constexpr bool Dynamic = Dims < 0; const unsigned char *data_; // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
// make large performance gains on big, nested loops, but requires compile-time dimensions
conditional_t<Dynamic, const size_t *, std::array<size_t, (size_t) Dims>> shape_, strides_; const size_t dims_;
friend class pybind11::array; // Constructor for compile-time dimensions:
template <bool Dyn = Dynamic> unchecked_reference(const void *data, const size_t *shape, const size_t *strides, enable_if_t<!Dyn, size_t>) : data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} { for (size_t i = 0; i < dims_; i++) { shape_[i] = shape[i]; strides_[i] = strides[i]; } } // Constructor for runtime dimensions:
template <bool Dyn = Dynamic> unchecked_reference(const void *data, const size_t *shape, const size_t *strides, enable_if_t<Dyn, size_t> dims) : data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides}, dims_{dims} {}
public: /** Unchecked const reference access to data at the given indices. For a compile-time known
* number of dimensions, this requires the correct number of arguments; for run-time * dimensionality, this is not checked (and so is up to the caller to use safely). */ template <typename... Ix> const T &operator()(Ix... index) const { static_assert(sizeof...(Ix) == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return *reinterpret_cast<const T *>(data_ + byte_offset_unsafe(strides_, size_t(index)...)); } /** Unchecked const reference access to data; this operator only participates if the reference
* is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`. */ template <size_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>> const T &operator[](size_t index) const { return operator()(index); }
/// Pointer access to the data at the given indices.
template <typename... Ix> const T *data(Ix... ix) const { return &operator()(size_t(ix)...); }
/// Returns the item size, i.e. sizeof(T)
constexpr static size_t itemsize() { return sizeof(T); }
/// Returns the shape (i.e. size) of dimension `dim`
size_t shape(size_t dim) const { return shape_[dim]; }
/// Returns the number of dimensions of the array
size_t ndim() const { return dims_; }
/// Returns the total number of elements in the referenced array, i.e. the product of the shapes
template <bool Dyn = Dynamic> enable_if_t<!Dyn, size_t> size() const { return std::accumulate(shape_.begin(), shape_.end(), (size_t) 1, std::multiplies<size_t>()); } template <bool Dyn = Dynamic> enable_if_t<Dyn, size_t> size() const { return std::accumulate(shape_, shape_ + ndim(), (size_t) 1, std::multiplies<size_t>()); }
/// Returns the total number of bytes used by the referenced data. Note that the actual span in
/// memory may be larger if the referenced array has non-contiguous strides (e.g. for a slice).
size_t nbytes() const { return size() * itemsize(); } };
template <typename T, ssize_t Dims> class unchecked_mutable_reference : public unchecked_reference<T, Dims> { friend class pybind11::array; using ConstBase = unchecked_reference<T, Dims>; using ConstBase::ConstBase; using ConstBase::Dynamic; public: /// Mutable, unchecked access to data at the given indices.
template <typename... Ix> T& operator()(Ix... index) { static_assert(sizeof...(Ix) == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return const_cast<T &>(ConstBase::operator()(index...)); } /** Mutable, unchecked access data at the given index; this operator only participates if the
* reference is to a 1-dimensional array (or has runtime dimensions). When present, this is * exactly equivalent to `obj(index)`. */ template <size_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>> T &operator[](size_t index) { return operator()(index); }
/// Mutable pointer access to the data at the given indices.
template <typename... Ix> T *mutable_data(Ix... ix) { return &operator()(size_t(ix)...); } };
template <typename T, size_t Dim> struct type_caster<unchecked_reference<T, Dim>> { static_assert(Dim == 0 && Dim > 0 /* always fail */, "unchecked array proxy object is not castable"); }; template <typename T, size_t Dim> struct type_caster<unchecked_mutable_reference<T, Dim>> : type_caster<unchecked_reference<T, Dim>> {};
NAMESPACE_END(detail)
class dtype : public object { public: PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_);
explicit dtype(const buffer_info &info) { dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format))); // If info.itemsize == 0, use the value calculated from the format string
m_ptr = descr.strip_padding(info.itemsize ? info.itemsize : descr.itemsize()).release().ptr(); }
explicit dtype(const std::string &format) { m_ptr = from_args(pybind11::str(format)).release().ptr(); }
dtype(const char *format) : dtype(std::string(format)) { }
dtype(list names, list formats, list offsets, size_t itemsize) { dict args; args["names"] = names; args["formats"] = formats; args["offsets"] = offsets; args["itemsize"] = pybind11::int_(itemsize); m_ptr = from_args(args).release().ptr(); }
/// This is essentially the same as calling numpy.dtype(args) in Python.
static dtype from_args(object args) { PyObject *ptr = nullptr; if (!detail::npy_api::get().PyArray_DescrConverter_(args.release().ptr(), &ptr) || !ptr) throw error_already_set(); return reinterpret_steal<dtype>(ptr); }
/// Return dtype associated with a C++ type.
template <typename T> static dtype of() { return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype(); }
/// Size of the data type in bytes.
size_t itemsize() const { return (size_t) detail::array_descriptor_proxy(m_ptr)->elsize; }
/// Returns true for structured data types.
bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; }
/// Single-character type code.
char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; }
private: static object _dtype_from_pep3118() { static PyObject *obj = module::import("numpy.core._internal") .attr("_dtype_from_pep3118").cast<object>().release().ptr(); return reinterpret_borrow<object>(obj); }
dtype strip_padding(size_t itemsize) { // Recursively strip all void fields with empty names that are generated for
// padding fields (as of NumPy v1.11).
if (!has_fields()) return *this;
struct field_descr { PYBIND11_STR_TYPE name; object format; pybind11::int_ offset; }; std::vector<field_descr> field_descriptors;
for (auto field : attr("fields").attr("items")()) { auto spec = field.cast<tuple>(); auto name = spec[0].cast<pybind11::str>(); auto format = spec[1].cast<tuple>()[0].cast<dtype>(); auto offset = spec[1].cast<tuple>()[1].cast<pybind11::int_>(); if (!len(name) && format.kind() == 'V') continue; field_descriptors.push_back({(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset}); }
std::sort(field_descriptors.begin(), field_descriptors.end(), [](const field_descr& a, const field_descr& b) { return a.offset.cast<int>() < b.offset.cast<int>(); });
list names, formats, offsets; for (auto& descr : field_descriptors) { names.append(descr.name); formats.append(descr.format); offsets.append(descr.offset); } return dtype(names, formats, offsets, itemsize); } };
class array : public buffer { public: PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)
enum { c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_, f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_, forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_ };
array() : array(0, static_cast<const double *>(nullptr)) {}
array(const pybind11::dtype &dt, const std::vector<size_t> &shape, const std::vector<size_t> &strides, const void *ptr = nullptr, handle base = handle()) { auto& api = detail::npy_api::get(); auto ndim = shape.size(); if (shape.size() != strides.size()) pybind11_fail("NumPy: shape ndim doesn't match strides ndim"); auto descr = dt;
int flags = 0; if (base && ptr) { if (isinstance<array>(base)) /* Copy flags from base (except ownership bit) */ flags = reinterpret_borrow<array>(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_; else /* Writable by default, easy to downgrade later on if needed */ flags = detail::npy_api::NPY_ARRAY_WRITEABLE_; }
auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_( api.PyArray_Type_, descr.release().ptr(), (int) ndim, reinterpret_cast<Py_intptr_t *>(const_cast<size_t*>(shape.data())), reinterpret_cast<Py_intptr_t *>(const_cast<size_t*>(strides.data())), const_cast<void *>(ptr), flags, nullptr)); if (!tmp) pybind11_fail("NumPy: unable to create array!"); if (ptr) { if (base) { api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr()); } else { tmp = reinterpret_steal<object>(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */)); } } m_ptr = tmp.release().ptr(); }
array(const pybind11::dtype &dt, const std::vector<size_t> &shape, const void *ptr = nullptr, handle base = handle()) : array(dt, shape, default_strides(shape, dt.itemsize()), ptr, base) { }
array(const pybind11::dtype &dt, size_t count, const void *ptr = nullptr, handle base = handle()) : array(dt, std::vector<size_t>{ count }, ptr, base) { }
template<typename T> array(const std::vector<size_t>& shape, const std::vector<size_t>& strides, const T* ptr, handle base = handle()) : array(pybind11::dtype::of<T>(), shape, strides, (const void *) ptr, base) { }
template <typename T> array(const std::vector<size_t> &shape, const T *ptr, handle base = handle()) : array(shape, default_strides(shape, sizeof(T)), ptr, base) { }
template <typename T> array(size_t count, const T *ptr, handle base = handle()) : array(std::vector<size_t>{ count }, ptr, base) { }
explicit array(const buffer_info &info) : array(pybind11::dtype(info), info.shape, info.strides, info.ptr) { }
/// Array descriptor (dtype)
pybind11::dtype dtype() const { return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr); }
/// Total number of elements
size_t size() const { return std::accumulate(shape(), shape() + ndim(), (size_t) 1, std::multiplies<size_t>()); }
/// Byte size of a single element
size_t itemsize() const { return (size_t) detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize; }
/// Total number of bytes
size_t nbytes() const { return size() * itemsize(); }
/// Number of dimensions
size_t ndim() const { return (size_t) detail::array_proxy(m_ptr)->nd; }
/// Base object
object base() const { return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base); }
/// Dimensions of the array
const size_t* shape() const { return reinterpret_cast<const size_t *>(detail::array_proxy(m_ptr)->dimensions); }
/// Dimension along a given axis
size_t shape(size_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return shape()[dim]; }
/// Strides of the array
const size_t* strides() const { return reinterpret_cast<const size_t *>(detail::array_proxy(m_ptr)->strides); }
/// Stride along a given axis
size_t strides(size_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return strides()[dim]; }
/// Return the NumPy array flags
int flags() const { return detail::array_proxy(m_ptr)->flags; }
/// If set, the array is writeable (otherwise the buffer is read-only)
bool writeable() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_); }
/// If set, the array owns the data (will be freed when the array is deleted)
bool owndata() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_); }
/// Pointer to the contained data. If index is not provided, points to the
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
template<typename... Ix> const void* data(Ix... index) const { return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...)); }
/// Mutable pointer to the contained data. If index is not provided, points to the
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
/// May throw if the array is not writeable.
template<typename... Ix> void* mutable_data(Ix... index) { check_writeable(); return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...)); }
/// Byte offset from beginning of the array to a given index (full or partial).
/// May throw if the index would lead to out of bounds access.
template<typename... Ix> size_t offset_at(Ix... index) const { if (sizeof...(index) > ndim()) fail_dim_check(sizeof...(index), "too many indices for an array"); return byte_offset(size_t(index)...); }
size_t offset_at() const { return 0; }
/// Item count from beginning of the array to a given index (full or partial).
/// May throw if the index would lead to out of bounds access.
template<typename... Ix> size_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); }
/** Returns a proxy object that provides access to the array's data without bounds or
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template <typename T, ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() { if (Dims >= 0 && ndim() != (size_t) Dims) throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); return detail::unchecked_mutable_reference<T, Dims>(mutable_data(), shape(), strides(), ndim()); }
/** Returns a proxy object that provides const access to the array's data without bounds or
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the * underlying array have the `writable` flag. Use with care: the array must not be destroyed or * reshaped for the duration of the returned object, and the caller must take care not to access * invalid dimensions or dimension indices. */ template <typename T, ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const { if (Dims >= 0 && ndim() != (size_t) Dims) throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim()); }
/// Return a new view with all of the dimensions of length 1 removed
array squeeze() { auto& api = detail::npy_api::get(); return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr)); }
/// Ensure that the argument is a NumPy array
/// In case of an error, nullptr is returned and the Python error is cleared.
static array ensure(handle h, int ExtraFlags = 0) { auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags)); if (!result) PyErr_Clear(); return result; }
protected: template<typename, typename> friend struct detail::npy_format_descriptor;
void fail_dim_check(size_t dim, const std::string& msg) const { throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim()) + ")"); }
template<typename... Ix> size_t byte_offset(Ix... index) const { check_dimensions(index...); return detail::byte_offset_unsafe(strides(), size_t(index)...); }
void check_writeable() const { if (!writeable()) throw std::domain_error("array is not writeable"); }
static std::vector<size_t> default_strides(const std::vector<size_t>& shape, size_t itemsize) { auto ndim = shape.size(); std::vector<size_t> strides(ndim); if (ndim) { std::fill(strides.begin(), strides.end(), itemsize); for (size_t i = 0; i < ndim - 1; i++) for (size_t j = 0; j < ndim - 1 - i; j++) strides[j] *= shape[ndim - 1 - i]; } return strides; }
template<typename... Ix> void check_dimensions(Ix... index) const { check_dimensions_impl(size_t(0), shape(), size_t(index)...); }
void check_dimensions_impl(size_t, const size_t*) const { }
template<typename... Ix> void check_dimensions_impl(size_t axis, const size_t* shape, size_t i, Ix... index) const { if (i >= *shape) { throw index_error(std::string("index ") + std::to_string(i) + " is out of bounds for axis " + std::to_string(axis) + " with size " + std::to_string(*shape)); } check_dimensions_impl(axis + 1, shape + 1, index...); }
/// Create array from any object -- always returns a new reference
static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) { if (ptr == nullptr) return nullptr; return detail::npy_api::get().PyArray_FromAny_( ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } };
template <typename T, int ExtraFlags = array::forcecast> class array_t : public array { public: using value_type = T;
array_t() : array(0, static_cast<const T *>(nullptr)) {} array_t(handle h, borrowed_t) : array(h, borrowed) { } array_t(handle h, stolen_t) : array(h, stolen) { }
PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead") array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen) { if (!m_ptr) PyErr_Clear(); if (!is_borrowed) Py_XDECREF(h.ptr()); }
array_t(const object &o) : array(raw_array_t(o.ptr()), stolen) { if (!m_ptr) throw error_already_set(); }
explicit array_t(const buffer_info& info) : array(info) { }
array_t(const std::vector<size_t> &shape, const std::vector<size_t> &strides, const T *ptr = nullptr, handle base = handle()) : array(shape, strides, ptr, base) { }
explicit array_t(const std::vector<size_t> &shape, const T *ptr = nullptr, handle base = handle()) : array(shape, ptr, base) { }
explicit array_t(size_t count, const T *ptr = nullptr, handle base = handle()) : array(count, ptr, base) { }
constexpr size_t itemsize() const { return sizeof(T); }
template<typename... Ix> size_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); }
template<typename... Ix> const T* data(Ix... index) const { return static_cast<const T*>(array::data(index...)); }
template<typename... Ix> T* mutable_data(Ix... index) { return static_cast<T*>(array::mutable_data(index...)); }
// Reference to element at a given index
template<typename... Ix> const T& at(Ix... index) const { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast<const T*>(array::data()) + byte_offset(size_t(index)...) / itemsize()); }
// Mutable reference to element at a given index
template<typename... Ix> T& mutable_at(Ix... index) { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast<T*>(array::mutable_data()) + byte_offset(size_t(index)...) / itemsize()); }
/** Returns a proxy object that provides access to the array's data without bounds or
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template <ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() { return array::mutable_unchecked<T, Dims>(); }
/** Returns a proxy object that provides const access to the array's data without bounds or
* dimensionality checking. Unlike `unchecked()`, this does not require that the underlying * array have the `writable` flag. Use with care: the array must not be destroyed or reshaped * for the duration of the returned object, and the caller must take care not to access invalid * dimensions or dimension indices. */ template <ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const { return array::unchecked<T, Dims>(); }
/// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
/// it). In case of an error, nullptr is returned and the Python error is cleared.
static array_t ensure(handle h) { auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr())); if (!result) PyErr_Clear(); return result; }
static bool check_(handle h) { const auto &api = detail::npy_api::get(); return api.PyArray_Check_(h.ptr()) && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of<T>().ptr()); }
protected: /// Create array from any object -- always returns a new reference
static PyObject *raw_array_t(PyObject *ptr) { if (ptr == nullptr) return nullptr; return detail::npy_api::get().PyArray_FromAny_( ptr, dtype::of<T>().release().ptr(), 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } };
template <typename T> struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> { static std::string format() { return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format(); } };
template <size_t N> struct format_descriptor<char[N]> { static std::string format() { return std::to_string(N) + "s"; } }; template <size_t N> struct format_descriptor<std::array<char, N>> { static std::string format() { return std::to_string(N) + "s"; } };
template <typename T> struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> { static std::string format() { return format_descriptor< typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format(); } };
NAMESPACE_BEGIN(detail) template <typename T, int ExtraFlags> struct pyobject_caster<array_t<T, ExtraFlags>> { using type = array_t<T, ExtraFlags>;
bool load(handle src, bool convert) { if (!convert && !type::check_(src)) return false; value = type::ensure(src); return static_cast<bool>(value); }
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name()); };
template <typename T> struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> { static bool compare(const buffer_info& b) { return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr()); } };
template <typename T> struct npy_format_descriptor<T, enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>> { private: // NB: the order here must match the one in common.h
constexpr static const int values[15] = { npy_api::NPY_BOOL_, npy_api::NPY_BYTE_, npy_api::NPY_UBYTE_, npy_api::NPY_SHORT_, npy_api::NPY_USHORT_, npy_api::NPY_INT_, npy_api::NPY_UINT_, npy_api::NPY_LONGLONG_, npy_api::NPY_ULONGLONG_, npy_api::NPY_FLOAT_, npy_api::NPY_DOUBLE_, npy_api::NPY_LONGDOUBLE_, npy_api::NPY_CFLOAT_, npy_api::NPY_CDOUBLE_, npy_api::NPY_CLONGDOUBLE_ };
public: static constexpr int value = values[detail::is_fmt_numeric<T>::index];
static pybind11::dtype dtype() { if (auto ptr = npy_api::get().PyArray_DescrFromType_(value)) return reinterpret_borrow<pybind11::dtype>(ptr); pybind11_fail("Unsupported buffer format!"); } template <typename T2 = T, enable_if_t<std::is_integral<T2>::value, int> = 0> static PYBIND11_DESCR name() { return _<std::is_same<T, bool>::value>(_("bool"), _<std::is_signed<T>::value>("int", "uint") + _<sizeof(T)*8>()); } template <typename T2 = T, enable_if_t<std::is_floating_point<T2>::value, int> = 0> static PYBIND11_DESCR name() { return _<std::is_same<T, float>::value || std::is_same<T, double>::value>( _("float") + _<sizeof(T)*8>(), _("longdouble")); } template <typename T2 = T, enable_if_t<is_complex<T2>::value, int> = 0> static PYBIND11_DESCR name() { return _<std::is_same<typename T2::value_type, float>::value || std::is_same<typename T2::value_type, double>::value>( _("complex") + _<sizeof(typename T2::value_type)*16>(), _("longcomplex")); } };
#define PYBIND11_DECL_CHAR_FMT \
static PYBIND11_DESCR name() { return _("S") + _<N>(); } \ static pybind11::dtype dtype() { return pybind11::dtype(std::string("S") + std::to_string(N)); } template <size_t N> struct npy_format_descriptor<char[N]> { PYBIND11_DECL_CHAR_FMT }; template <size_t N> struct npy_format_descriptor<std::array<char, N>> { PYBIND11_DECL_CHAR_FMT }; #undef PYBIND11_DECL_CHAR_FMT
template<typename T> struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> { private: using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>; public: static PYBIND11_DESCR name() { return base_descr::name(); } static pybind11::dtype dtype() { return base_descr::dtype(); } };
struct field_descriptor { const char *name; size_t offset; size_t size; size_t alignment; std::string format; dtype descr; };
inline PYBIND11_NOINLINE void register_structured_dtype( const std::initializer_list<field_descriptor>& fields, const std::type_info& tinfo, size_t itemsize, bool (*direct_converter)(PyObject *, void *&)) {
auto& numpy_internals = get_numpy_internals(); if (numpy_internals.get_type_info(tinfo, false)) pybind11_fail("NumPy: dtype is already registered");
list names, formats, offsets; for (auto field : fields) { if (!field.descr) pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ " + tinfo.name()); names.append(PYBIND11_STR_TYPE(field.name)); formats.append(field.descr); offsets.append(pybind11::int_(field.offset)); } auto dtype_ptr = pybind11::dtype(names, formats, offsets, itemsize).release().ptr();
// There is an existing bug in NumPy (as of v1.11): trailing bytes are
// not encoded explicitly into the format string. This will supposedly
// get fixed in v1.12; for further details, see these:
// - https://github.com/numpy/numpy/issues/7797
// - https://github.com/numpy/numpy/pull/7798
// Because of this, we won't use numpy's logic to generate buffer format
// strings and will just do it ourselves.
std::vector<field_descriptor> ordered_fields(fields); std::sort(ordered_fields.begin(), ordered_fields.end(), [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; }); size_t offset = 0; std::ostringstream oss; oss << "T{"; for (auto& field : ordered_fields) { if (field.offset > offset) oss << (field.offset - offset) << 'x'; // mark unaligned fields with '^' (unaligned native type)
if (field.offset % field.alignment) oss << '^'; oss << field.format << ':' << field.name << ':'; offset = field.offset + field.size; } if (itemsize > offset) oss << (itemsize - offset) << 'x'; oss << '}'; auto format_str = oss.str();
// Sanity check: verify that NumPy properly parses our buffer format string
auto& api = npy_api::get(); auto arr = array(buffer_info(nullptr, itemsize, format_str, 1)); if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) pybind11_fail("NumPy: invalid buffer descriptor!");
auto tindex = std::type_index(tinfo); numpy_internals.registered_dtypes[tindex] = { dtype_ptr, format_str }; get_internals().direct_conversions[tindex].push_back(direct_converter); }
template <typename T, typename SFINAE> struct npy_format_descriptor { static_assert(is_pod_struct<T>::value, "Attempt to use a non-POD or unimplemented POD type as a numpy dtype");
static PYBIND11_DESCR name() { return make_caster<T>::name(); }
static pybind11::dtype dtype() { return reinterpret_borrow<pybind11::dtype>(dtype_ptr()); }
static std::string format() { static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str; return format_str; }
static void register_dtype(const std::initializer_list<field_descriptor>& fields) { register_structured_dtype(fields, typeid(typename std::remove_cv<T>::type), sizeof(T), &direct_converter); }
private: static PyObject* dtype_ptr() { static PyObject* ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr; return ptr; }
static bool direct_converter(PyObject *obj, void*& value) { auto& api = npy_api::get(); if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) return false; if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) { if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) { value = ((PyVoidScalarObject_Proxy *) obj)->obval; return true; } } return false; } };
#define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \
::pybind11::detail::field_descriptor { \ Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)), \ alignof(decltype(std::declval<T>().Field)), \ ::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(), \ ::pybind11::detail::npy_format_descriptor<decltype(std::declval<T>().Field)>::dtype() \ }
// Extract name, offset and format descriptor for a struct field
#define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field)
// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
// (C) William Swanson, Paul Fultz
#define PYBIND11_EVAL0(...) __VA_ARGS__
#define PYBIND11_EVAL1(...) PYBIND11_EVAL0 (PYBIND11_EVAL0 (PYBIND11_EVAL0 (__VA_ARGS__)))
#define PYBIND11_EVAL2(...) PYBIND11_EVAL1 (PYBIND11_EVAL1 (PYBIND11_EVAL1 (__VA_ARGS__)))
#define PYBIND11_EVAL3(...) PYBIND11_EVAL2 (PYBIND11_EVAL2 (PYBIND11_EVAL2 (__VA_ARGS__)))
#define PYBIND11_EVAL4(...) PYBIND11_EVAL3 (PYBIND11_EVAL3 (PYBIND11_EVAL3 (__VA_ARGS__)))
#define PYBIND11_EVAL(...) PYBIND11_EVAL4 (PYBIND11_EVAL4 (PYBIND11_EVAL4 (__VA_ARGS__)))
#define PYBIND11_MAP_END(...)
#define PYBIND11_MAP_OUT
#define PYBIND11_MAP_COMMA ,
#define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
#define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
#define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0 (test, next, 0)
#define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1 (PYBIND11_MAP_GET_END test, next)
#ifdef _MSC_VER // MSVC is not as eager to expand macros, hence this workaround
#define PYBIND11_MAP_LIST_NEXT1(test, next) \
PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else
#define PYBIND11_MAP_LIST_NEXT1(test, next) \
PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif
#define PYBIND11_MAP_LIST_NEXT(test, next) \
PYBIND11_MAP_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \
f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \
f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
#define PYBIND11_MAP_LIST(f, t, ...) \
PYBIND11_EVAL (PYBIND11_MAP_LIST1 (f, t, __VA_ARGS__, (), 0))
#define PYBIND11_NUMPY_DTYPE(Type, ...) \
::pybind11::detail::npy_format_descriptor<Type>::register_dtype \ ({PYBIND11_MAP_LIST (PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})
#ifdef _MSC_VER
#define PYBIND11_MAP2_LIST_NEXT1(test, next) \
PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else
#define PYBIND11_MAP2_LIST_NEXT1(test, next) \
PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif
#define PYBIND11_MAP2_LIST_NEXT(test, next) \
PYBIND11_MAP2_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
#define PYBIND11_MAP2_LIST(f, t, ...) \
PYBIND11_EVAL (PYBIND11_MAP2_LIST1 (f, t, __VA_ARGS__, (), 0))
#define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \
::pybind11::detail::npy_format_descriptor<Type>::register_dtype \ ({PYBIND11_MAP2_LIST (PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})
template <class T> using array_iterator = typename std::add_pointer<T>::type;
template <class T> array_iterator<T> array_begin(const buffer_info& buffer) { return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr)); }
template <class T> array_iterator<T> array_end(const buffer_info& buffer) { return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr) + buffer.size); }
class common_iterator { public: using container_type = std::vector<size_t>; using value_type = container_type::value_type; using size_type = container_type::size_type;
common_iterator() : p_ptr(0), m_strides() {}
common_iterator(void* ptr, const container_type& strides, const std::vector<size_t>& shape) : p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size()) { m_strides.back() = static_cast<value_type>(strides.back()); for (size_type i = m_strides.size() - 1; i != 0; --i) { size_type j = i - 1; value_type s = static_cast<value_type>(shape[i]); m_strides[j] = strides[j] + m_strides[i] - strides[i] * s; } }
void increment(size_type dim) { p_ptr += m_strides[dim]; }
void* data() const { return p_ptr; }
private: char* p_ptr; container_type m_strides; };
template <size_t N> class multi_array_iterator { public: using container_type = std::vector<size_t>;
multi_array_iterator(const std::array<buffer_info, N> &buffers, const std::vector<size_t> &shape) : m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() {
// Manual copy to avoid conversion warning if using std::copy
for (size_t i = 0; i < shape.size(); ++i) m_shape[i] = static_cast<container_type::value_type>(shape[i]);
container_type strides(shape.size()); for (size_t i = 0; i < N; ++i) init_common_iterator(buffers[i], shape, m_common_iterator[i], strides); }
multi_array_iterator& operator++() { for (size_t j = m_index.size(); j != 0; --j) { size_t i = j - 1; if (++m_index[i] != m_shape[i]) { increment_common_iterator(i); break; } else { m_index[i] = 0; } } return *this; }
template <size_t K, class T> const T& data() const { return *reinterpret_cast<T*>(m_common_iterator[K].data()); }
private:
using common_iter = common_iterator;
void init_common_iterator(const buffer_info &buffer, const std::vector<size_t> &shape, common_iter &iterator, container_type &strides) { auto buffer_shape_iter = buffer.shape.rbegin(); auto buffer_strides_iter = buffer.strides.rbegin(); auto shape_iter = shape.rbegin(); auto strides_iter = strides.rbegin();
while (buffer_shape_iter != buffer.shape.rend()) { if (*shape_iter == *buffer_shape_iter) *strides_iter = static_cast<size_t>(*buffer_strides_iter); else *strides_iter = 0;
++buffer_shape_iter; ++buffer_strides_iter; ++shape_iter; ++strides_iter; }
std::fill(strides_iter, strides.rend(), 0); iterator = common_iter(buffer.ptr, strides, shape); }
void increment_common_iterator(size_t dim) { for (auto &iter : m_common_iterator) iter.increment(dim); }
container_type m_shape; container_type m_index; std::array<common_iter, N> m_common_iterator; };
enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };
// Populates the shape and number of dimensions for the set of buffers. Returns a broadcast_trivial
// enum value indicating whether the broadcast is "trivial"--that is, has each buffer being either a
// singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous (`f_trivial`) storage
// buffer; returns `non_trivial` otherwise.
template <size_t N> broadcast_trivial broadcast(const std::array<buffer_info, N> &buffers, size_t &ndim, std::vector<size_t> &shape) { ndim = std::accumulate(buffers.begin(), buffers.end(), size_t(0), [](size_t res, const buffer_info& buf) { return std::max(res, buf.ndim); });
shape.clear(); shape.resize(ndim, 1);
// Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 or
// the full size).
for (size_t i = 0; i < N; ++i) { auto res_iter = shape.rbegin(); auto end = buffers[i].shape.rend(); for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; ++shape_iter, ++res_iter) { const auto &dim_size_in = *shape_iter; auto &dim_size_out = *res_iter;
// Each input dimension can either be 1 or `n`, but `n` values must match across buffers
if (dim_size_out == 1) dim_size_out = dim_size_in; else if (dim_size_in != 1 && dim_size_in != dim_size_out) pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); } }
bool trivial_broadcast_c = true; bool trivial_broadcast_f = true; for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) { if (buffers[i].size == 1) continue;
// Require the same number of dimensions:
if (buffers[i].ndim != ndim) return broadcast_trivial::non_trivial;
// Require all dimensions be full-size:
if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) return broadcast_trivial::non_trivial;
// Check for C contiguity (but only if previous inputs were also C contiguous)
if (trivial_broadcast_c) { size_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.crend(); for (auto shape_iter = buffers[i].shape.crbegin(), stride_iter = buffers[i].strides.crbegin(); trivial_broadcast_c && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) expect_stride *= *shape_iter; else trivial_broadcast_c = false; } }
// Check for Fortran contiguity (if previous inputs were also F contiguous)
if (trivial_broadcast_f) { size_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.cend(); for (auto shape_iter = buffers[i].shape.cbegin(), stride_iter = buffers[i].strides.cbegin(); trivial_broadcast_f && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) expect_stride *= *shape_iter; else trivial_broadcast_f = false; } } }
return trivial_broadcast_c ? broadcast_trivial::c_trivial : trivial_broadcast_f ? broadcast_trivial::f_trivial : broadcast_trivial::non_trivial; }
template <typename Func, typename Return, typename... Args> struct vectorize_helper { typename std::remove_reference<Func>::type f; static constexpr size_t N = sizeof...(Args);
template <typename T> explicit vectorize_helper(T&&f) : f(std::forward<T>(f)) { }
object operator()(array_t<Args, array::forcecast>... args) { return run(args..., make_index_sequence<N>()); }
template <size_t ... Index> object run(array_t<Args, array::forcecast>&... args, index_sequence<Index...> index) { /* Request buffers from all parameters */ std::array<buffer_info, N> buffers {{ args.request()... }};
/* Determine dimensions parameters of output array */ size_t ndim = 0; std::vector<size_t> shape(0); auto trivial = broadcast(buffers, ndim, shape);
size_t size = 1; std::vector<size_t> strides(ndim); if (ndim > 0) { if (trivial == broadcast_trivial::f_trivial) { strides[0] = sizeof(Return); for (size_t i = 1; i < ndim; ++i) { strides[i] = strides[i - 1] * shape[i - 1]; size *= shape[i - 1]; } size *= shape[ndim - 1]; } else { strides[ndim-1] = sizeof(Return); for (size_t i = ndim - 1; i > 0; --i) { strides[i - 1] = strides[i] * shape[i]; size *= shape[i]; } size *= shape[0]; } }
if (size == 1) return cast(f(*reinterpret_cast<Args *>(buffers[Index].ptr)...));
array_t<Return> result(shape, strides); auto buf = result.request(); auto output = (Return *) buf.ptr;
/* Call the function */ if (trivial == broadcast_trivial::non_trivial) { apply_broadcast<Index...>(buffers, buf, index); } else { for (size_t i = 0; i < size; ++i) output[i] = f((reinterpret_cast<Args *>(buffers[Index].ptr)[buffers[Index].size == 1 ? 0 : i])...); }
return result; }
template <size_t... Index> void apply_broadcast(const std::array<buffer_info, N> &buffers, buffer_info &output, index_sequence<Index...>) { using input_iterator = multi_array_iterator<N>; using output_iterator = array_iterator<Return>;
input_iterator input_iter(buffers, output.shape); output_iterator output_end = array_end<Return>(output);
for (output_iterator iter = array_begin<Return>(output); iter != output_end; ++iter, ++input_iter) { *iter = f((input_iter.template data<Index, Args>())...); } } };
template <typename T, int Flags> struct handle_type_name<array_t<T, Flags>> { static PYBIND11_DESCR name() { return _("numpy.ndarray[") + npy_format_descriptor<T>::name() + _("]"); } };
NAMESPACE_END(detail)
template <typename Func, typename Return, typename... Args> detail::vectorize_helper<Func, Return, Args...> vectorize(const Func &f, Return (*) (Args ...)) { return detail::vectorize_helper<Func, Return, Args...>(f); }
template <typename Return, typename... Args> detail::vectorize_helper<Return (*) (Args ...), Return, Args...> vectorize(Return (*f) (Args ...)) { return vectorize<Return (*) (Args ...), Return, Args...>(f, f); }
template <typename Func, typename FuncType = typename detail::remove_class<decltype(&std::remove_reference<Func>::type::operator())>::type> auto vectorize(Func &&f) -> decltype( vectorize(std::forward<Func>(f), (FuncType *) nullptr)) { return vectorize(std::forward<Func>(f), (FuncType *) nullptr); }
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
|