|
|
/*
pybind11/cast.h: Partial template specializations to cast between C++ and Python types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#pragma once
#include "pytypes.h"
#include "typeid.h"
#include "descr.h"
#include <array>
#include <limits>
NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) inline PyTypeObject *make_static_property_type(); inline PyTypeObject *make_default_metaclass();
/// Additional type information which does not fit into the PyTypeObject
struct type_info { PyTypeObject *type; size_t type_size; void *(*operator_new)(size_t); void (*init_holder)(PyObject *, const void *); void (*dealloc)(PyObject *); std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions; std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts; std::vector<bool (*)(PyObject *, void *&)> *direct_conversions; buffer_info *(*get_buffer)(PyObject *, void *) = nullptr; void *get_buffer_data = nullptr; /** A simple type never occurs as a (direct or indirect) parent
* of a class that makes use of multiple inheritance */ bool simple_type = true; /* for base vs derived holder_type checks */ bool default_holder = true; };
PYBIND11_NOINLINE inline internals &get_internals() { static internals *internals_ptr = nullptr; if (internals_ptr) return *internals_ptr; handle builtins(PyEval_GetBuiltins()); const char *id = PYBIND11_INTERNALS_ID; if (builtins.contains(id) && isinstance<capsule>(builtins[id])) { internals_ptr = capsule(builtins[id]); } else { internals_ptr = new internals(); #if defined(WITH_THREAD)
PyEval_InitThreads(); PyThreadState *tstate = PyThreadState_Get(); internals_ptr->tstate = PyThread_create_key(); PyThread_set_key_value(internals_ptr->tstate, tstate); internals_ptr->istate = tstate->interp; #endif
builtins[id] = capsule(internals_ptr); internals_ptr->registered_exception_translators.push_front( [](std::exception_ptr p) -> void { try { if (p) std::rethrow_exception(p); } catch (error_already_set &e) { e.restore(); return; } catch (const builtin_exception &e) { e.set_error(); return; } catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return; } catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return; } catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return; } catch (...) { PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); return; } } ); internals_ptr->static_property_type = make_static_property_type(); internals_ptr->default_metaclass = make_default_metaclass(); } return *internals_ptr; }
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { auto const &type_dict = get_internals().registered_types_py; do { auto it = type_dict.find(type); if (it != type_dict.end()) return (detail::type_info *) it->second; type = type->tp_base; if (!type) return nullptr; } while (true); }
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp, bool throw_if_missing = false) { auto &types = get_internals().registered_types_cpp;
auto it = types.find(std::type_index(tp)); if (it != types.end()) return (detail::type_info *) it->second; if (throw_if_missing) { std::string tname = tp.name(); detail::clean_type_id(tname); pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); } return nullptr; }
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { detail::type_info *type_info = get_type_info(tp, throw_if_missing); return handle(type_info ? ((PyObject *) type_info->type) : nullptr); }
PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { handle type = detail::get_type_handle(tp, false); if (!type) return false; return isinstance(obj, type); }
PYBIND11_NOINLINE inline std::string error_string() { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); return "Unknown internal error occurred"; }
error_scope scope; // Preserve error state
std::string errorString; if (scope.type) { errorString += handle(scope.type).attr("__name__").cast<std::string>(); errorString += ": "; } if (scope.value) errorString += (std::string) str(scope.value);
PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
#if PY_MAJOR_VERSION >= 3
if (scope.trace != nullptr) PyException_SetTraceback(scope.value, scope.trace); #endif
#if !defined(PYPY_VERSION)
if (scope.trace) { PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
/* Get the deepest trace possible */ while (trace->tb_next) trace = trace->tb_next;
PyFrameObject *frame = trace->tb_frame; errorString += "\n\nAt:\n"; while (frame) { int lineno = PyFrame_GetLineNumber(frame); errorString += " " + handle(frame->f_code->co_filename).cast<std::string>() + "(" + std::to_string(lineno) + "): " + handle(frame->f_code->co_name).cast<std::string>() + "\n"; frame = frame->f_back; } trace = trace->tb_next; } #endif
return errorString; }
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { auto &instances = get_internals().registered_instances; auto range = instances.equal_range(ptr); for (auto it = range.first; it != range.second; ++it) { auto instance_type = detail::get_type_info(Py_TYPE(it->second)); if (instance_type && instance_type == type) return handle((PyObject *) it->second); } return handle(); }
inline PyThreadState *get_thread_state_unchecked() { #if defined(PYPY_VERSION)
return PyThreadState_GET(); #elif PY_VERSION_HEX < 0x03000000
return _PyThreadState_Current; #elif PY_VERSION_HEX < 0x03050000
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); #elif PY_VERSION_HEX < 0x03050200
return (PyThreadState*) _PyThreadState_Current.value; #else
return _PyThreadState_UncheckedGet(); #endif
}
// Forward declaration
inline void keep_alive_impl(handle nurse, handle patient);
class type_caster_generic { public: PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) : typeinfo(get_type_info(type_info)) { }
PYBIND11_NOINLINE bool load(handle src, bool convert) { if (!src) return false; return load(src, convert, Py_TYPE(src.ptr())); }
bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; }
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) { value = reinterpret_cast<instance<void> *>(src.ptr())->value; return true; } } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) { value = reinterpret_cast<instance<void> *>(src.ptr())->value; return true; }
/* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow<tuple>(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } }
/* Try implicit casts */ for (auto &cast : typeinfo->implicit_casts) { type_caster_generic sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); return true; } } }
/* Perform an implicit conversion */ if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } for (auto &converter : *typeinfo->direct_conversions) { if (converter(src.ptr(), value)) return true; } } return false; }
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, const std::type_info *type_info, const std::type_info *type_info_backup, void *(*copy_constructor)(const void *), void *(*move_constructor)(const void *), const void *existing_holder = nullptr) { void *src = const_cast<void *>(_src); if (src == nullptr) return none().inc_ref();
auto &internals = get_internals();
auto it = internals.registered_types_cpp.find(std::type_index(*type_info)); if (it == internals.registered_types_cpp.end()) { type_info = type_info_backup; it = internals.registered_types_cpp.find(std::type_index(*type_info)); }
if (it == internals.registered_types_cpp.end()) { std::string tname = type_info->name(); detail::clean_type_id(tname); std::string msg = "Unregistered type : " + tname; PyErr_SetString(PyExc_TypeError, msg.c_str()); return handle(); }
auto tinfo = (const detail::type_info *) it->second;
auto it_instances = internals.registered_instances.equal_range(src); for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { auto instance_type = detail::get_type_info(Py_TYPE(it_i->second)); if (instance_type && instance_type == tinfo) return handle((PyObject *) it_i->second).inc_ref(); }
auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0));
auto wrapper = (instance<void> *) inst.ptr();
wrapper->value = nullptr; wrapper->owned = false;
switch (policy) { case return_value_policy::automatic: case return_value_policy::take_ownership: wrapper->value = src; wrapper->owned = true; break;
case return_value_policy::automatic_reference: case return_value_policy::reference: wrapper->value = src; wrapper->owned = false; break;
case return_value_policy::copy: if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = copy, but the " "object is non-copyable!"); wrapper->owned = true; break;
case return_value_policy::move: if (move_constructor) wrapper->value = move_constructor(src); else if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = move, but the " "object is neither movable nor copyable!"); wrapper->owned = true; break;
case return_value_policy::reference_internal: wrapper->value = src; wrapper->owned = false; detail::keep_alive_impl(inst, parent); break;
default: throw cast_error("unhandled return_value_policy: should not happen!"); }
tinfo->init_holder(inst.ptr(), existing_holder);
internals.registered_instances.emplace(wrapper->value, inst.ptr());
return inst.release(); }
protected: const type_info *typeinfo = nullptr; void *value = nullptr; object temp; };
/* Determine suitable casting operator */ template <typename T> using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value, typename std::add_pointer<intrinsic_t<T>>::type, typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type;
// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
// Specialization for types that appear to be copy constructible but also look like stl containers
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
// so, copy constructability depends on whether the value_type is copy constructible.
template <typename Container> struct is_copy_constructible<Container, enable_if_t< std::is_copy_constructible<Container>::value && std::is_same<typename Container::value_type &, typename Container::reference>::value >> : std::is_copy_constructible<typename Container::value_type> {};
/// Generic type caster for objects stored on the heap
template <typename type> class type_caster_base : public type_caster_generic { using itype = intrinsic_t<type>; public: static PYBIND11_DESCR name() { return type_descr(_<type>()); }
type_caster_base() : type_caster_base(typeid(type)) { } explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
static handle cast(const itype &src, return_value_policy policy, handle parent) { if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) policy = return_value_policy::copy; return cast(&src, policy, parent); }
static handle cast(itype &&src, return_value_policy, handle parent) { return cast(&src, return_value_policy::move, parent); }
static handle cast(const itype *src, return_value_policy policy, handle parent) { return type_caster_generic::cast( src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type), make_copy_constructor(src), make_move_constructor(src)); }
static handle cast_holder(const itype *src, const void *holder) { return type_caster_generic::cast( src, return_value_policy::take_ownership, {}, src ? &typeid(*src) : nullptr, &typeid(type), nullptr, nullptr, holder); }
template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;
operator itype*() { return (type *) value; } operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
protected: typedef void *(*Constructor)(const void *stream); #if !defined(_MSC_VER)
/* Only enabled when the types are {copy,move}-constructible *and* when the type
does not have a private operator new implementaton. */ template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) { return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; } template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) { return [](const void *arg) -> void * { return (void *) new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg)))); }; } #else
/* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
Use a workaround that only tests for constructibility for now. */ template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static Constructor make_copy_constructor(const T *value) { return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; } template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>> static Constructor make_move_constructor(const T *value) { return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; } #endif
static Constructor make_copy_constructor(...) { return nullptr; } static Constructor make_move_constructor(...) { return nullptr; } };
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { }; template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) { return caster.operator typename make_caster<T>::template cast_op_type<T>(); } template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &&caster) { return cast_op<T>(caster); }
template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> { public: static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) { return type_caster_base<type>::cast(&src.get(), policy, parent); } template <typename T> using cast_op_type = std::reference_wrapper<type>; operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); } };
#define PYBIND11_TYPE_CASTER(type, py_name) \
protected: \ type value; \ public: \ static PYBIND11_DESCR name() { return type_descr(py_name); } \ static handle cast(const type *src, return_value_policy policy, handle parent) { \ if (!src) return none().release(); \ return cast(*src, policy, parent); \ } \ operator type*() { return &value; } \ operator type&() { return value; } \ template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>
template <typename CharT> using is_std_char_type = any_of< std::is_same<CharT, char>, /* std::string */ std::is_same<CharT, char16_t>, /* std::u16string */ std::is_same<CharT, char32_t>, /* std::u32string */ std::is_same<CharT, wchar_t> /* std::wstring */ >;
template <typename T> struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> { using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>; using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>; public:
bool load(handle src, bool convert) { py_type py_value;
if (!src) return false;
if (std::is_floating_point<T>::value) { if (convert || PyFloat_Check(src.ptr())) py_value = (py_type) PyFloat_AsDouble(src.ptr()); else return false; } else if (sizeof(T) <= sizeof(long)) { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed<T>::value) py_value = (py_type) PyLong_AsLong(src.ptr()); else py_value = (py_type) PyLong_AsUnsignedLong(src.ptr()); } else { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed<T>::value) py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); else py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr()); }
if ((py_value == (py_type) -1 && PyErr_Occurred()) || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && (py_value < (py_type) std::numeric_limits<T>::min() || py_value > (py_type) std::numeric_limits<T>::max()))) { #if PY_VERSION_HEX < 0x03000000
bool type_error = PyErr_ExceptionMatches(PyExc_SystemError); #else
bool type_error = PyErr_ExceptionMatches(PyExc_TypeError); #endif
PyErr_Clear(); if (type_error && convert && PyNumber_Check(src.ptr())) { auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; }
value = (T) py_value; return true; }
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) { if (std::is_floating_point<T>::value) { return PyFloat_FromDouble((double) src); } else if (sizeof(T) <= sizeof(long)) { if (std::is_signed<T>::value) return PyLong_FromLong((long) src); else return PyLong_FromUnsignedLong((unsigned long) src); } else { if (std::is_signed<T>::value) return PyLong_FromLongLong((long long) src); else return PyLong_FromUnsignedLongLong((unsigned long long) src); } }
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float")); };
template<typename T> struct void_caster { public: bool load(handle, bool) { return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().inc_ref(); } PYBIND11_TYPE_CASTER(T, _("None")); };
template <> class type_caster<void_type> : public void_caster<void_type> {};
template <> class type_caster<void> : public type_caster<void_type> { public: using type_caster<void_type>::cast;
bool load(handle h, bool) { if (!h) { return false; } else if (h.is_none()) { value = nullptr; return true; }
/* Check if this is a capsule */ if (isinstance<capsule>(h)) { value = reinterpret_borrow<capsule>(h); return true; }
/* Check if this is a C++ type */ if (get_type_info((PyTypeObject *) h.get_type().ptr())) { value = ((instance<void> *) h.ptr())->value; return true; }
/* Fail */ return false; }
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) return capsule(ptr).release(); else return none().inc_ref(); }
template <typename T> using cast_op_type = void*&; operator void *&() { return value; } static PYBIND11_DESCR name() { return type_descr(_("capsule")); } private: void *value = nullptr; };
template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };
template <> class type_caster<bool> { public: bool load(handle src, bool) { if (!src) return false; else if (src.ptr() == Py_True) { value = true; return true; } else if (src.ptr() == Py_False) { value = false; return true; } else return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, _("bool")); };
// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename CharT, class Traits, class Allocator> struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>> { // Simplify life by being able to assume standard char sizes (the standard only guarantees
// minimums), but Python requires exact sizes
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1"); static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, "Unsupported wchar_t size != 2/4"); static constexpr size_t UTF_N = 8 * sizeof(CharT);
using StringType = std::basic_string<CharT, Traits, Allocator>;
bool load(handle src, bool) { #if PY_MAJOR_VERSION < 3
object temp; #endif
handle load_src = src; if (!src) { return false; } else if (!PyUnicode_Check(load_src.ptr())) { #if PY_MAJOR_VERSION >= 3
return false; // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
#else
if (!PYBIND11_BYTES_CHECK(load_src.ptr())) return false; temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } load_src = temp; #endif
}
object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString( load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); if (!utfNbytes) { PyErr_Clear(); return false; }
const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
value = StringType(buffer, length); return true; }
static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { const char *buffer = reinterpret_cast<const char *>(src.c_str()); ssize_t nbytes = ssize_t(src.size() * sizeof(CharT)); handle s = decode_utfN(buffer, nbytes); if (!s) throw error_already_set(); return s; }
PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
private: static handle decode_utfN(const char *buffer, ssize_t nbytes) { #if !defined(PYPY_VERSION)
return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); #else
// PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
// sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
// non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
// passing the encoding as a string value, which works properly:
return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); #endif
} };
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> { using StringType = std::basic_string<CharT>; using StringCaster = type_caster<StringType>; StringCaster str_caster; bool none = false; public: bool load(handle src, bool convert) { if (!src) return false; if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) return false; none = true; return true; } return str_caster.load(src, convert); }
static handle cast(const CharT *src, return_value_policy policy, handle parent) { if (src == nullptr) return pybind11::none().inc_ref(); return StringCaster::cast(StringType(src), policy, parent); }
static handle cast(CharT src, return_value_policy policy, handle parent) { if (std::is_same<char, CharT>::value) { handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); if (!s) throw error_already_set(); return s; } return StringCaster::cast(StringType(1, src), policy, parent); }
operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); } operator CharT() { if (none) throw value_error("Cannot convert None to a character");
auto &value = static_cast<StringType &>(str_caster); size_t str_len = value.size(); if (str_len == 0) throw value_error("Cannot convert empty string to a character");
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
// is too high, and one for multiple unicode characters (caught later), so we need to figure
// out how long the first encoded character is in bytes to distinguish between these two
// errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
// can fit into a single char value.
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { unsigned char v0 = static_cast<unsigned char>(value[0]); size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
(v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
(v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
4; // 0b11110xxx - start of 4-byte sequence
if (char0_bytes == str_len) { // If we have a 128-255 value, we can decode it into a single char:
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F)); } // Otherwise we have a single character, but it's > U+00FF
throw value_error("Character code point not in range(0x100)"); } }
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
// string was too long" error).
else if (StringCaster::UTF_N == 16 && str_len == 2) { char16_t v0 = static_cast<char16_t>(value[0]); if (v0 >= 0xD800 && v0 < 0xE000) throw value_error("Character code point not in range(0x10000)"); }
if (str_len != 1) throw value_error("Expected a character, but multi-character string found");
return value[0]; }
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } template <typename _T> using cast_op_type = typename std::remove_reference<pybind11::detail::cast_op_type<_T>>::type; };
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> { typedef std::pair<T1, T2> type; public: bool load(handle src, bool convert) { if (!isinstance<sequence>(src)) return false; const auto seq = reinterpret_borrow<sequence>(src); if (seq.size() != 2) return false; return first.load(seq[0], convert) && second.load(seq[1], convert); }
static handle cast(const type &src, return_value_policy policy, handle parent) { auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent)); auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent)); if (!o1 || !o2) return handle(); tuple result(2); PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr()); PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr()); return result.release(); }
static PYBIND11_DESCR name() { return type_descr( _("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]") ); }
template <typename T> using cast_op_type = type;
operator type() { return type(cast_op<T1>(first), cast_op<T2>(second)); } protected: make_caster<T1> first; make_caster<T2> second; };
template <typename... Tuple> class type_caster<std::tuple<Tuple...>> { using type = std::tuple<Tuple...>; using indices = make_index_sequence<sizeof...(Tuple)>; static constexpr auto size = sizeof...(Tuple);
public: bool load(handle src, bool convert) { if (!isinstance<sequence>(src)) return false; const auto seq = reinterpret_borrow<sequence>(src); if (seq.size() != size) return false; return load_impl(seq, convert, indices{}); }
static handle cast(const type &src, return_value_policy policy, handle parent) { return cast_impl(src, policy, parent, indices{}); }
static PYBIND11_DESCR name() { return type_descr(_("Tuple[") + detail::concat(make_caster<Tuple>::name()...) + _("]")); }
template <typename T> using cast_op_type = type;
operator type() { return implicit_cast(indices{}); }
protected: template <size_t... Is> type implicit_cast(index_sequence<Is...>) { return type(cast_op<Tuple>(std::get<Is>(value))...); }
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
template <size_t... Is> bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) { for (bool r : {std::get<Is>(value).load(seq[Is], convert)...}) if (!r) return false; return true; }
static handle cast_impl(const type &, return_value_policy, handle, index_sequence<>) { return tuple().release(); }
/* Implementation: Convert a C++ tuple into a Python tuple */ template <size_t... Is> static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence<Is...>) { std::array<object, size> entries {{ reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Is>(src), policy, parent))... }}; for (const auto &entry: entries) if (!entry) return handle(); tuple result(size); int counter = 0; for (auto & entry: entries) PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); return result.release(); }
std::tuple<make_caster<Tuple>...> value; };
/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T> struct holder_helper { static auto get(const T &p) -> decltype(p.get()) { return p.get(); } };
/// Type caster for holder types like std::shared_ptr, etc.
template <typename type, typename holder_type> struct copyable_holder_caster : public type_caster_base<type> { public: using base = type_caster_base<type>; using base::base; using base::cast; using base::typeinfo; using base::value; using base::temp;
PYBIND11_NOINLINE bool load(handle src, bool convert) { return load(src, convert, Py_TYPE(src.ptr())); }
bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; }
if (typeinfo->default_holder) throw cast_error("Unable to load a custom holder type from a default-holder instance");
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) return load_value_and_holder(src); } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) return load_value_and_holder(src);
/* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow<tuple>(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } }
if (try_implicit_casts(src, convert)) return true; }
if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } }
return false; }
bool load_value_and_holder(handle src) { auto inst = (instance<type, holder_type> *) src.ptr(); value = (void *) inst->value; if (inst->holder_constructed) { holder = inst->holder; return true; } else { throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) " #if defined(NDEBUG)
"(compile in debug mode for type information)"); #else
"of type '" + type_id<holder_type>() + "''"); #endif
} }
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; }
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { copyable_holder_caster sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; }
explicit operator type*() { return this->value; } explicit operator type&() { return *(this->value); } explicit operator holder_type*() { return &holder; }
// Workaround for Intel compiler bug
// see pybind11 issue 94
#if defined(__ICC) || defined(__INTEL_COMPILER)
operator holder_type&() { return holder; } #else
explicit operator holder_type&() { return holder; } #endif
static handle cast(const holder_type &src, return_value_policy, handle) { const auto *ptr = holder_helper<holder_type>::get(src); return type_caster_base<type>::cast_holder(ptr, &src); }
protected: holder_type holder; };
/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T> class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
template <typename type, typename holder_type> struct move_only_holder_caster { static handle cast(holder_type &&src, return_value_policy, handle) { auto *ptr = holder_helper<holder_type>::get(src); return type_caster_base<type>::cast_holder(ptr, &src); } static PYBIND11_DESCR name() { return type_caster_base<type>::name(); } };
template <typename type, typename deleter> class type_caster<std::unique_ptr<type, deleter>> : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
template <typename type, typename holder_type> using type_caster_holder = conditional_t<std::is_copy_constructible<holder_type>::value, copyable_holder_caster<type, holder_type>, move_only_holder_caster<type, holder_type>>;
template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
namespace pybind11 { namespace detail { \ template <typename type> \ struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \ template <typename type> \ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \ : public type_caster_holder<type, holder_type> { }; \ }}
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder> struct is_holder_type : std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {}; // Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {};
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } }; template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } }; template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } }; template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
template <typename type> struct pyobject_caster { template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0> bool load(handle src, bool /* convert */) { if (!isinstance<type>(src)) return false; value = reinterpret_borrow<type>(src); return true; }
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name()); };
template <typename T> class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T> using move_is_plain_type = satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const >; template <typename T, typename SFINAE = void> struct move_always : std::false_type {}; template <typename T> struct move_always<T, enable_if_t<all_of< move_is_plain_type<T>, negation<std::is_copy_constructible<T>>, std::is_move_constructible<T>, std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> >::value>> : std::true_type {}; template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {}; template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of< move_is_plain_type<T>, negation<move_always<T>>, std::is_move_constructible<T>, std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> >::value>> : std::true_type {}; template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster. Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type> using cast_is_temporary_value_reference = bool_constant< (std::is_reference<type>::value || std::is_pointer<type>::value) && !std::is_base_of<type_caster_generic, make_caster<type>>::value >;
// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
// specializing this struct.
template <typename Return, typename SFINAE = void> struct return_value_policy_override { static return_value_policy policy(return_value_policy p) { return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value ? return_value_policy::move : p; } };
// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) { if (!conv.load(handle, true)) { #if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); #else
throw cast_error("Unable to cast Python instance of type " + (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''"); #endif
} return conv; } // Wrapper around the above that also constructs and returns a type_caster
template <typename T> make_caster<T> load_type(const handle &handle) { make_caster<T> conv; load_type(conv, handle); return conv; }
NAMESPACE_END(detail)
// pytype -> C++ type
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference<T>::value, "Unable to cast type to reference: value is local to type caster"); return cast_op<T>(load_type<T>(handle)); }
// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { if (policy == return_value_policy::automatic) policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy; else if (policy == return_value_policy::automatic_reference) policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy; return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent)); }
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); } template <> inline void handle::cast() const { return; }
template <typename T> detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) { if (obj.ref_count() > 1) #if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" " (compile in debug mode for details)"); #else
throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + " instance to C++ " + type_id<T>() + " instance: instance has multiple references"); #endif
// Move into a temporary and return that, because the reference may be a local value of `conv`
T ret = std::move(detail::load_type<T>(obj).operator T&()); return ret; }
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) { return move<T>(std::move(object)); } template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) { if (object.ref_count() > 1) return cast<T>(object); else return move<T>(std::move(object)); } template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) { return cast<T>(object); }
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); } template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; }
NAMESPACE_BEGIN(detail)
// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
template <typename ret_type> using overload_caster_t = conditional_t< cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable. For other types, this is a no-op.
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) { return cast_op<T>(load_type(caster, o)); } template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); }
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
// cases where pybind11::cast is valid.
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) { return pybind11::cast<T>(std::move(o)); } template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <> inline void cast_safe<void>(object &&) {}
NAMESPACE_END(detail)
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args> tuple make_tuple(Args&&... args_) { const size_t size = sizeof...(Args); std::array<object, size> args { { reinterpret_steal<object>(detail::make_caster<Args>::cast( std::forward<Args>(args_), policy, nullptr))... } }; for (auto &arg_value : args) { if (!arg_value) { #if defined(NDEBUG)
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); #else
throw cast_error("make_tuple(): unable to convert arguments of types '" + (std::string) type_id<std::tuple<Args...>>() + "' to Python object"); #endif
} } tuple result(size); int counter = 0; for (auto &arg_value : args) PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); return result; }
/// \ingroup annotations
/// Annotation for arguments
struct arg { /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false) { } /// Assign a value to this argument
template <typename T> arg_v operator=(T &&value) const; /// Indicate that the type should not be converted in the type caster
arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
const char *name; ///< If non-null, this is a named kwargs argument
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
};
/// \ingroup annotations
/// Annotation for arguments with values
struct arg_v : arg { private: template <typename T> arg_v(arg &&base, T &&x, const char *descr = nullptr) : arg(base), value(reinterpret_steal<object>( detail::make_caster<T>::cast(x, return_value_policy::automatic, {}) )), descr(descr) #if !defined(NDEBUG)
, type(type_id<T>()) #endif
{ }
public: /// Direct construction with name, default, and description
template <typename T> arg_v(const char *name, T &&x, const char *descr = nullptr) : arg_v(arg(name), std::forward<T>(x), descr) { }
/// Called internally when invoking `py::arg("a") = value`
template <typename T> arg_v(const arg &base, T &&x, const char *descr = nullptr) : arg_v(arg(base), std::forward<T>(x), descr) { }
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
/// The default value
object value; /// The (optional) description of the default value
const char *descr; #if !defined(NDEBUG)
/// The C++ type name of the default value (only available when compiled in debug mode)
std::string type; #endif
};
template <typename T> arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/> using arg_t = arg_v;
inline namespace literals { /** \rst
String literal version of `arg` \endrst */ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } }
NAMESPACE_BEGIN(detail)
// forward declaration
struct function_record;
/// Internal data associated with a single function call
struct function_call { function_call(function_record &f, handle p); // Implementation in attr.h
/// The function data:
const function_record &func;
/// Arguments passed to the function:
std::vector<handle> args;
/// The `convert` value the arguments should be loaded with
std::vector<bool> args_convert;
/// The parent, if any
handle parent; };
/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args> class argument_loader { using indices = make_index_sequence<sizeof...(Args)>;
template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>; template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>; // Get args/kwargs argument positions relative to the end of the argument list:
static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args), kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
public: static constexpr bool has_kwargs = kwargs_pos < 0; static constexpr bool has_args = args_pos < 0;
static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); }
template <typename Return, typename Func> enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) { return call_impl<Return>(std::forward<Func>(f), indices{}); }
template <typename Return, typename Func> enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) { call_impl<Return>(std::forward<Func>(f), indices{}); return void_type(); }
private:
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
template <size_t... Is> bool load_impl_sequence(function_call &call, index_sequence<Is...>) { for (bool r : {std::get<Is>(value).load(call.args[Is], call.args_convert[Is])...}) if (!r) return false; return true; }
template <typename Return, typename Func, size_t... Is> Return call_impl(Func &&f, index_sequence<Is...>) { return std::forward<Func>(f)(cast_op<Args>(std::get<Is>(value))...); }
std::tuple<make_caster<Args>...> value; };
/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy> class simple_collector { public: template <typename... Ts> explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
const tuple &args() const & { return m_args; } dict kwargs() const { return {}; }
tuple args() && { return std::move(m_args); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) throw error_already_set(); return reinterpret_steal<object>(result); }
private: tuple m_args; };
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy> class unpacking_collector { public: template <typename... Ts> explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection,
// but the actual function call strictly requires a tuple.
auto args_list = list(); int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... }; ignore_unused(_);
m_args = std::move(args_list); }
const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; }
tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) throw error_already_set(); return reinterpret_steal<object>(result); }
private: template <typename T> void process(list &args_list, T &&x) { auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {})); if (!o) { #if defined(NDEBUG)
argument_cast_error(); #else
argument_cast_error(std::to_string(args_list.size()), type_id<T>()); #endif
} args_list.append(o); }
void process(list &args_list, detail::args_proxy ap) { for (const auto &a : ap) args_list.append(a); }
void process(list &/*args_list*/, arg_v a) { if (!a.name) #if defined(NDEBUG)
nameless_argument_error(); #else
nameless_argument_error(a.type); #endif
if (m_kwargs.contains(a.name)) { #if defined(NDEBUG)
multiple_values_error(); #else
multiple_values_error(a.name); #endif
} if (!a.value) { #if defined(NDEBUG)
argument_cast_error(); #else
argument_cast_error(a.name, a.type); #endif
} m_kwargs[a.name] = a.value; }
void process(list &/*args_list*/, detail::kwargs_proxy kp) { if (!kp) return; for (const auto &k : reinterpret_borrow<dict>(kp)) { if (m_kwargs.contains(k.first)) { #if defined(NDEBUG)
multiple_values_error(); #else
multiple_values_error(str(k.first)); #endif
} m_kwargs[k.first] = k.second; } }
[[noreturn]] static void nameless_argument_error() { throw type_error("Got kwargs without a name; only named arguments " "may be passed via py::arg() to a python function call. " "(compile in debug mode for details)"); } [[noreturn]] static void nameless_argument_error(std::string type) { throw type_error("Got kwargs without a name of type '" + type + "'; only named " "arguments may be passed via py::arg() to a python function call. "); } [[noreturn]] static void multiple_values_error() { throw type_error("Got multiple values for keyword argument " "(compile in debug mode for details)"); }
[[noreturn]] static void multiple_values_error(std::string name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); }
[[noreturn]] static void argument_cast_error() { throw cast_error("Unable to convert call argument to Python object " "(compile in debug mode for details)"); }
[[noreturn]] static void argument_cast_error(std::string name, std::string type) { throw cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); }
private: tuple m_args; dict m_kwargs; };
/// Collect only positional arguments for a Python function call
template <return_value_policy policy, typename... Args, typename = enable_if_t<all_of<is_positional<Args>...>::value>> simple_collector<policy> collect_arguments(Args &&...args) { return simple_collector<policy>(std::forward<Args>(args)...); }
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy, typename... Args, typename = enable_if_t<!all_of<is_positional<Args>...>::value>> unpacking_collector<policy> collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448
static_assert( constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>() && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking" ); return unpacking_collector<policy>(std::forward<Args>(args)...); }
template <typename Derived> template <return_value_policy policy, typename... Args> object object_api<Derived>::operator()(Args &&...args) const { return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr()); }
template <typename Derived> template <return_value_policy policy, typename... Args> object object_api<Derived>::call(Args &&...args) const { return operator()<policy>(std::forward<Args>(args)...); }
NAMESPACE_END(detail)
#define PYBIND11_MAKE_OPAQUE(Type) \
namespace pybind11 { namespace detail { \ template<> class type_caster<Type> : public type_caster_base<Type> { }; \ }}
NAMESPACE_END(pybind11)
|