You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

58 lines
2.4 KiB

8 years ago
  1. /*
  2. tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
  3. arguments
  4. Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
  5. All rights reserved. Use of this source code is governed by a
  6. BSD-style license that can be found in the LICENSE file.
  7. */
  8. #include "pybind11_tests.h"
  9. #include <pybind11/numpy.h>
  10. double my_func(int x, float y, double z) {
  11. py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
  12. return (float) x*y*z;
  13. }
  14. std::complex<double> my_func3(std::complex<double> c) {
  15. return c * std::complex<double>(2.f);
  16. }
  17. test_initializer numpy_vectorize([](py::module &m) {
  18. // Vectorize all arguments of a function (though non-vector arguments are also allowed)
  19. m.def("vectorized_func", py::vectorize(my_func));
  20. // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
  21. m.def("vectorized_func2",
  22. [](py::array_t<int> x, py::array_t<float> y, float z) {
  23. return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
  24. }
  25. );
  26. // Vectorize a complex-valued function
  27. m.def("vectorized_func3", py::vectorize(my_func3));
  28. /// Numpy function which only accepts specific data types
  29. m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
  30. m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
  31. m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
  32. // Internal optimization test for whether the input is trivially broadcastable:
  33. py::enum_<py::detail::broadcast_trivial>(m, "trivial")
  34. .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
  35. .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
  36. .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
  37. m.def("vectorized_is_trivial", [](
  38. py::array_t<int, py::array::forcecast> arg1,
  39. py::array_t<float, py::array::forcecast> arg2,
  40. py::array_t<double, py::array::forcecast> arg3
  41. ) {
  42. size_t ndim;
  43. std::vector<size_t> shape;
  44. std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
  45. return py::detail::broadcast(buffers, ndim, shape);
  46. });
  47. });