You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
import stormpy import stormpy.core import stormpy.simulator
import stormpy.shields
import stormpy.examples import stormpy.examples.files
import random
"""
Simulating a model with the usage of a pre shield """
def example_pre_shield_simulator(): path = stormpy.examples.files.prism_mdp_cliff_walking formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
program = stormpy.parse_prism_program(path) formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
options = stormpy.BuilderOptions([p.raw_formula for p in formulas]) options.set_build_state_valuations(True) options.set_build_choice_labels(True) options.set_build_all_labels() model = stormpy.build_sparse_model_with_options(program, options)
initial_state = model.initial_states[0] assert initial_state == 0 shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9) result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification) assert result.has_scheduler assert result.has_shield shield = result.shield
pre_scheduler = shield.construct()
simulator = stormpy.simulator.create_simulator(model, seed=42)
while not simulator.is_done(): current_state = simulator.get_current_state() state_string = model.state_valuations.get_string(current_state) print(F"Simulator is in state {state_string}.") choices = [x for x in pre_scheduler.get_choice(current_state).choice_map if x[0] > 0] choice_labels = [model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, choice[1])) for choice in choices] if not choices: break
index = random.randint(0, len(choices) - 1) selected_action = choices[index] choice_label = model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, selected_action[1])) print(F"Allowed Choices are {choice_labels}. Selected Action: {choice_label}") observation, reward = simulator.step(selected_action[1])
if __name__ == '__main__': example_pre_shield_simulator()
|