You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

51 lines
1.5 KiB

  1. import stormpy
  2. import stormpy.core
  3. import stormpy.simulator
  4. import stormpy.shields
  5. import stormpy.examples
  6. import stormpy.examples.files
  7. """
  8. Example for the extraction of a Post Safety Shield
  9. from a model checking result and querying the shield
  10. for allowed actions.
  11. """
  12. def post_shield_extraction():
  13. path = stormpy.examples.files.prism_mdp_lava_simple
  14. formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
  15. program = stormpy.parse_prism_program(path)
  16. formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
  17. options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
  18. options.set_build_state_valuations(True)
  19. options.set_build_choice_labels(True)
  20. options.set_build_all_labels()
  21. model = stormpy.build_sparse_model_with_options(program, options)
  22. initial_state = model.initial_states[0]
  23. assert initial_state == 0
  24. shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.POST_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
  25. result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
  26. assert result.has_scheduler
  27. assert result.has_shield
  28. shield = result.shield
  29. post_scheduler = shield.construct()
  30. for state_id in model.states:
  31. choices = post_scheduler.get_choice(state_id)
  32. print(F"Applied corrections in state {state_id}, are {choices.choice_map} ")
  33. if __name__ == '__main__':
  34. post_shield_extraction()