|
|
/*
pybind11/pybind11.h: Main header file of the C++11 python binding generator library
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#pragma once
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
# pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
# pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
# pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
# pragma warning(disable: 4702) // warning C4702: unreachable code
# pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified
#elif defined(__INTEL_COMPILER)
# pragma warning(push)
# pragma warning(disable: 186) // pointless comparison of unsigned integer with zero
# pragma warning(disable: 1334) // the "template" keyword used for syntactic disambiguation may only be used within a template
# pragma warning(disable: 2196) // warning #2196: routine is both "inline" and "noinline"
#elif defined(__GNUG__) && !defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
# pragma GCC diagnostic ignored "-Wstrict-aliasing"
# pragma GCC diagnostic ignored "-Wattributes"
#endif
#include "attr.h"
#include "options.h"
#include "class_support.h"
NAMESPACE_BEGIN(pybind11)
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function { public: cpp_function() { }
/// Construct a cpp_function from a vanilla function pointer
template <typename Return, typename... Args, typename... Extra> cpp_function(Return (*f)(Args...), const Extra&... extra) { initialize(f, f, extra...); }
/// Construct a cpp_function from a lambda function (possibly with internal state)
template <typename Func, typename... Extra, typename = detail::enable_if_t< detail::satisfies_none_of< typename std::remove_reference<Func>::type, std::is_function, std::is_pointer, std::is_member_pointer >::value> > cpp_function(Func &&f, const Extra&... extra) { using FuncType = typename detail::remove_class<decltype(&std::remove_reference<Func>::type::operator())>::type; initialize(std::forward<Func>(f), (FuncType *) nullptr, extra...); }
/// Construct a cpp_function from a class method (non-const)
template <typename Return, typename Class, typename... Arg, typename... Extra> cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) { initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*) (Class *, Arg...)) nullptr, extra...); }
/// Construct a cpp_function from a class method (const)
template <typename Return, typename Class, typename... Arg, typename... Extra> cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*)(const Class *, Arg ...)) nullptr, extra...); }
/// Return the function name
object name() const { return attr("__name__"); }
protected: /// Space optimization: don't inline this frequently instantiated fragment
PYBIND11_NOINLINE detail::function_record *make_function_record() { return new detail::function_record(); }
/// Special internal constructor for functors, lambda functions, etc.
template <typename Func, typename Return, typename... Args, typename... Extra> void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) {
struct capture { typename std::remove_reference<Func>::type f; };
/* Store the function including any extra state it might have (e.g. a lambda capture object) */ auto rec = make_function_record();
/* Store the capture object directly in the function record if there is enough space */ if (sizeof(capture) <= sizeof(rec->data)) { /* Without these pragmas, GCC warns that there might not be
enough space to use the placement new operator. However, the 'if' statement above ensures that this is the case. */ #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wplacement-new"
#endif
new ((capture *) &rec->data) capture { std::forward<Func>(f) }; #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
# pragma GCC diagnostic pop
#endif
if (!std::is_trivially_destructible<Func>::value) rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); }; } else { rec->data[0] = new capture { std::forward<Func>(f) }; rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); }; }
/* Type casters for the function arguments and return value */ using cast_in = detail::argument_loader<Args...>; using cast_out = detail::make_caster< detail::conditional_t<std::is_void<Return>::value, detail::void_type, Return> >;
static_assert(detail::expected_num_args<Extra...>(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs), "The number of argument annotations does not match the number of function arguments");
/* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_call &call) -> handle { cast_in args_converter;
/* Try to cast the function arguments into the C++ domain */ if (!args_converter.load_args(call)) return PYBIND11_TRY_NEXT_OVERLOAD;
/* Invoke call policy pre-call hook */ detail::process_attributes<Extra...>::precall(call);
/* Get a pointer to the capture object */ auto data = (sizeof(capture) <= sizeof(call.func.data) ? &call.func.data : call.func.data[0]); capture *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));
/* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */ const auto policy = detail::return_value_policy_override<Return>::policy(call.func.policy);
/* Perform the function call */ handle result = cast_out::cast(args_converter.template call<Return>(cap->f), policy, call.parent);
/* Invoke call policy post-call hook */ detail::process_attributes<Extra...>::postcall(call, result);
return result; };
/* Process any user-provided function attributes */ detail::process_attributes<Extra...>::init(extra..., rec);
/* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; using detail::_; PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name();
/* Register the function with Python from generic (non-templated) code */ initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args));
if (cast_in::has_args) rec->has_args = true; if (cast_in::has_kwargs) rec->has_kwargs = true;
/* Stash some additional information used by an important optimization in 'functional.h' */ using FunctionType = Return (*)(Args...); constexpr bool is_function_ptr = std::is_convertible<Func, FunctionType>::value && sizeof(capture) == sizeof(void *); if (is_function_ptr) { rec->is_stateless = true; rec->data[1] = const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType))); } }
/// Register a function call with Python (generic non-templated code goes here)
void initialize_generic(detail::function_record *rec, const char *text, const std::type_info *const *types, size_t args) {
/* Create copies of all referenced C-style strings */ rec->name = strdup(rec->name ? rec->name : ""); if (rec->doc) rec->doc = strdup(rec->doc); for (auto &a: rec->args) { if (a.name) a.name = strdup(a.name); if (a.descr) a.descr = strdup(a.descr); else if (a.value) a.descr = strdup(a.value.attr("__repr__")().cast<std::string>().c_str()); }
/* Generate a proper function signature */ std::string signature; size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0; while (true) { char c = text[char_index++]; if (c == '\0') break;
if (c == '{') { // Write arg name for everything except *args, **kwargs and return type.
if (type_depth == 0 && text[char_index] != '*' && arg_index < args) { if (!rec->args.empty() && rec->args[arg_index].name) { signature += rec->args[arg_index].name; } else if (arg_index == 0 && rec->is_method) { signature += "self"; } else { signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); } signature += ": "; } ++type_depth; } else if (c == '}') { --type_depth; if (type_depth == 0) { if (arg_index < rec->args.size() && rec->args[arg_index].descr) { signature += "="; signature += rec->args[arg_index].descr; } arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) pybind11_fail("Internal error while parsing type signature (1)"); if (auto tinfo = detail::get_type_info(*t)) { #if defined(PYPY_VERSION)
signature += handle((PyObject *) tinfo->type) .attr("__module__") .cast<std::string>() + "."; #endif
signature += tinfo->type->tp_name; } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (type_depth != 0 || types[type_index] != nullptr) pybind11_fail("Internal error while parsing type signature (2)");
#if !defined(PYBIND11_CPP14)
delete[] types; delete[] text; #endif
#if PY_MAJOR_VERSION < 3
if (strcmp(rec->name, "__next__") == 0) { std::free(rec->name); rec->name = strdup("next"); } else if (strcmp(rec->name, "__bool__") == 0) { std::free(rec->name); rec->name = strdup("__nonzero__"); } #endif
rec->signature = strdup(signature.c_str()); rec->args.shrink_to_fit(); rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__"); rec->nargs = (std::uint16_t) args;
#if PY_MAJOR_VERSION < 3
if (rec->sibling && PyMethod_Check(rec->sibling.ptr())) rec->sibling = PyMethod_GET_FUNCTION(rec->sibling.ptr()); #endif
detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling) { if (PyCFunction_Check(rec->sibling.ptr())) { auto rec_capsule = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(rec->sibling.ptr())); chain = (detail::function_record *) rec_capsule; /* Never append a method to an overload chain of a parent class;
instead, hide the parent's overloads in this case */ if (chain->scope != rec->scope) chain = nullptr; } // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing
else if (!rec->sibling.is_none() && rec->name[0] != '_') pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + "\" with a function of the same name"); }
if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast<PyCFunction>(*dispatcher); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;
capsule rec_capsule(rec, [](void *ptr) { destruct((detail::function_record *) ptr); });
object scope_module; if (rec->scope) { if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } }
m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } else { /* Append at the end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); chain_start = chain; while (chain->next) chain = chain->next; chain->next = rec; }
std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and
docstrings of the functions in the overload chain */ if (chain && options::show_function_signatures()) { // First a generic signature
signatures += rec->name; signatures += "(*args, **kwargs)\n"; signatures += "Overloaded function.\n\n"; } // Then specific overload signatures
bool first_user_def = true; for (auto it = chain_start; it != nullptr; it = it->next) { if (options::show_function_signatures()) { if (index > 0) signatures += "\n"; if (chain) signatures += std::to_string(++index) + ". "; signatures += rec->name; signatures += it->signature; signatures += "\n"; } if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) { // If we're appending another docstring, and aren't printing function signatures, we
// need to append a newline first:
if (!options::show_function_signatures()) { if (first_user_def) first_user_def = false; else signatures += "\n"; } if (options::show_function_signatures()) signatures += "\n"; signatures += it->doc; if (options::show_function_signatures()) signatures += "\n"; } }
/* Install docstring */ PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free(const_cast<char *>(func->m_ml->ml_doc)); func->m_ml->ml_doc = strdup(signatures.c_str());
if (rec->is_method) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } }
/// When a cpp_function is GCed, release any memory allocated by pybind11
static void destruct(detail::function_record *rec) { while (rec) { detail::function_record *next = rec->next; if (rec->free_data) rec->free_data(rec); std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg: rec->args) { std::free(const_cast<char *>(arg.name)); std::free(const_cast<char *>(arg.descr)); arg.value.dec_ref(); } if (rec->def) { std::free(const_cast<char *>(rec->def->ml_doc)); delete rec->def; } delete rec; rec = next; } }
/// Main dispatch logic for calls to functions bound using pybind11
static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) { using namespace detail;
/* Iterator over the list of potentially admissible overloads */ function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr), *it = overloads;
/* Need to know how many arguments + keyword arguments there are to pick the right overload */ const size_t n_args_in = (size_t) PyTuple_GET_SIZE(args_in);
handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD;
try { // We do this in two passes: in the first pass, we load arguments with `convert=false`;
// in the second, we allow conversion (except for arguments with an explicit
// py::arg().noconvert()). This lets us prefer calls without conversion, with
// conversion as a fallback.
std::vector<function_call> second_pass;
// However, if there are no overloads, we can just skip the no-convert pass entirely
const bool overloaded = it != nullptr && it->next != nullptr;
for (; it != nullptr; it = it->next) {
/* For each overload:
1. Copy all positional arguments we were given, also checking to make sure that named positional arguments weren't *also* specified via kwarg. 2. If we weren't given enough, try to make up the omitted ones by checking whether they were provided by a kwarg matching the `py::arg("name")` name. If so, use it (and remove it from kwargs; if not, see if the function binding provided a default that we can use. 3. Ensure that either all keyword arguments were "consumed", or that the function takes a kwargs argument to accept unconsumed kwargs. 4. Any positional arguments still left get put into a tuple (for args), and any leftover kwargs get put into a dict. 5. Pack everything into a vector; if we have py::args or py::kwargs, they are an extra tuple or dict at the end of the positional arguments. 6. Call the function call dispatcher (function_record::impl)
If one of these fail, move on to the next overload and keep trying until we get a result other than PYBIND11_TRY_NEXT_OVERLOAD. */
function_record &func = *it; size_t pos_args = func.nargs; // Number of positional arguments that we need
if (func.has_args) --pos_args; // (but don't count py::args
if (func.has_kwargs) --pos_args; // or py::kwargs)
if (!func.has_args && n_args_in > pos_args) continue; // Too many arguments for this overload
if (n_args_in < pos_args && func.args.size() < pos_args) continue; // Not enough arguments given, and not enough defaults to fill in the blanks
function_call call(func, parent);
size_t args_to_copy = std::min(pos_args, n_args_in); size_t args_copied = 0;
// 1. Copy any position arguments given.
bool bad_kwarg = false; for (; args_copied < args_to_copy; ++args_copied) { if (kwargs_in && args_copied < func.args.size() && func.args[args_copied].name && PyDict_GetItemString(kwargs_in, func.args[args_copied].name)) { bad_kwarg = true; break; }
call.args.push_back(PyTuple_GET_ITEM(args_in, args_copied)); call.args_convert.push_back(args_copied < func.args.size() ? func.args[args_copied].convert : true); } if (bad_kwarg) continue; // Maybe it was meant for another overload (issue #688)
// We'll need to copy this if we steal some kwargs for defaults
dict kwargs = reinterpret_borrow<dict>(kwargs_in);
// 2. Check kwargs and, failing that, defaults that may help complete the list
if (args_copied < pos_args) { bool copied_kwargs = false;
for (; args_copied < pos_args; ++args_copied) { const auto &arg = func.args[args_copied];
handle value; if (kwargs_in && arg.name) value = PyDict_GetItemString(kwargs.ptr(), arg.name);
if (value) { // Consume a kwargs value
if (!copied_kwargs) { kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr())); copied_kwargs = true; } PyDict_DelItemString(kwargs.ptr(), arg.name); } else if (arg.value) { value = arg.value; }
if (value) { call.args.push_back(value); call.args_convert.push_back(arg.convert); } else break; }
if (args_copied < pos_args) continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments
}
// 3. Check everything was consumed (unless we have a kwargs arg)
if (kwargs && kwargs.size() > 0 && !func.has_kwargs) continue; // Unconsumed kwargs, but no py::kwargs argument to accept them
// 4a. If we have a py::args argument, create a new tuple with leftovers
tuple extra_args; if (func.has_args) { if (args_to_copy == 0) { // We didn't copy out any position arguments from the args_in tuple, so we
// can reuse it directly without copying:
extra_args = reinterpret_borrow<tuple>(args_in); } else if (args_copied >= n_args_in) { extra_args = tuple(0); } else { size_t args_size = n_args_in - args_copied; extra_args = tuple(args_size); for (size_t i = 0; i < args_size; ++i) { handle item = PyTuple_GET_ITEM(args_in, args_copied + i); extra_args[i] = item.inc_ref().ptr(); } } call.args.push_back(extra_args); call.args_convert.push_back(false); }
// 4b. If we have a py::kwargs, pass on any remaining kwargs
if (func.has_kwargs) { if (!kwargs.ptr()) kwargs = dict(); // If we didn't get one, send an empty one
call.args.push_back(kwargs); call.args_convert.push_back(false); }
// 5. Put everything in a vector. Not technically step 5, we've been building it
// in `call.args` all along.
#if !defined(NDEBUG)
if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!"); #endif
std::vector<bool> second_pass_convert; if (overloaded) { // We're in the first no-convert pass, so swap out the conversion flags for a
// set of all-false flags. If the call fails, we'll swap the flags back in for
// the conversion-allowed call below.
second_pass_convert.resize(func.nargs, false); call.args_convert.swap(second_pass_convert); }
// 6. Call the function.
try { result = func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; }
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break;
if (overloaded) { // The (overloaded) call failed; if the call has at least one argument that
// permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
// then add this call to the list of second pass overloads to try.
for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) { if (second_pass_convert[i]) { // Found one: swap the converting flags back in and store the call for
// the second pass.
call.args_convert.swap(second_pass_convert); second_pass.push_back(std::move(call)); break; } } } }
if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { // The no-conversion pass finished without success, try again with conversion allowed
for (auto &call : second_pass) { try { result = call.func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; }
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; } } } catch (error_already_set &e) { e.restore(); return nullptr; } catch (...) { /* When an exception is caught, give each registered exception
translator a chance to translate it to a Python exception in reverse order of registration.
A translator may choose to do one of the following:
- catch the exception and call PyErr_SetString or PyErr_SetObject to set a standard (or custom) Python exception, or - do nothing and let the exception fall through to the next translator, or - delegate translation to the next translator by throwing a new type of exception. */
auto last_exception = std::current_exception(); auto ®istered_exception_translators = get_internals().registered_exception_translators; for (auto& translator : registered_exception_translators) { try { translator(last_exception); } catch (...) { last_exception = std::current_exception(); continue; } return nullptr; } PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); return nullptr; }
if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { if (overloads->is_operator) return handle(Py_NotImplemented).inc_ref().ptr();
std::string msg = std::string(overloads->name) + "(): incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") + " arguments. The following argument types are supported:\n";
int ctr = 0; for (function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " "+ std::to_string(++ctr) + ". ";
bool wrote_sig = false; if (overloads->is_constructor) { // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)`
std::string sig = it2->signature; size_t start = sig.find('(') + 7; // skip "(self: "
if (start < sig.size()) { // End at the , for the next argument
size_t end = sig.find(", "), next = end + 2; size_t ret = sig.rfind(" -> "); // Or the ), if there is no comma:
if (end >= sig.size()) next = end = sig.find(')'); if (start < end && next < sig.size()) { msg.append(sig, start, end - start); msg += '('; msg.append(sig, next, ret - next); wrote_sig = true; } } } if (!wrote_sig) msg += it2->signature;
msg += "\n"; } msg += "\nInvoked with: "; auto args_ = reinterpret_borrow<tuple>(args_in); bool some_args = false; for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { if (!some_args) some_args = true; else msg += ", "; msg += pybind11::repr(args_[ti]); } if (kwargs_in) { auto kwargs = reinterpret_borrow<dict>(kwargs_in); if (kwargs.size() > 0) { if (some_args) msg += "; "; msg += "kwargs: "; bool first = true; for (auto kwarg : kwargs) { if (first) first = false; else msg += ", "; msg += pybind11::str("{}={!r}").format(kwarg.first, kwarg.second); } } }
PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else { if (overloads->is_constructor) { /* When a constructor ran successfully, the corresponding
holder type (e.g. std::unique_ptr) must still be initialized. */ auto tinfo = get_type_info(Py_TYPE(parent.ptr())); tinfo->init_holder(parent.ptr(), nullptr); } return result.ptr(); } } };
/// Wrapper for Python extension modules
class module : public object { public: PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check)
/// Create a new top-level Python module with the given name and docstring
explicit module(const char *name, const char *doc = nullptr) { if (!options::show_user_defined_docstrings()) doc = nullptr; #if PY_MAJOR_VERSION >= 3
PyModuleDef *def = new PyModuleDef(); memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); #else
m_ptr = Py_InitModule3(name, nullptr, doc); #endif
if (m_ptr == nullptr) pybind11_fail("Internal error in module::module()"); inc_ref(); }
/** \rst
Create Python binding for a new function within the module scope. ``Func`` can be a plain C++ function, a function pointer, or a lambda function. For details on the ``Extra&& ... extra`` argument, see section :ref:`extras`. \endrst */ template <typename Func, typename... Extra> module &def(const char *name_, Func &&f, const Extra& ... extra) { cpp_function func(std::forward<Func>(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); // NB: allow overwriting here because cpp_function sets up a chain with the intention of
// overwriting (and has already checked internally that it isn't overwriting non-functions).
add_object(name_, func, true /* overwrite */); return *this; }
/** \rst
Create and return a new Python submodule with the given name and docstring. This also works recursively, i.e.
.. code-block:: cpp
py::module m("example", "pybind11 example plugin"); py::module m2 = m.def_submodule("sub", "A submodule of 'example'"); py::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'"); \endrst */ module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); auto result = reinterpret_borrow<module>(PyImport_AddModule(full_name.c_str())); if (doc && options::show_user_defined_docstrings()) result.attr("__doc__") = pybind11::str(doc); attr(name) = result; return result; }
/// Import and return a module or throws `error_already_set`.
static module import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) throw error_already_set(); return reinterpret_steal<module>(obj); }
// Adds an object to the module using the given name. Throws if an object with the given name
// already exists.
//
// overwrite should almost always be false: attempting to overwrite objects that pybind11 has
// established will, in most cases, break things.
PYBIND11_NOINLINE void add_object(const char *name, object &obj, bool overwrite = false) { if (!overwrite && hasattr(*this, name)) pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" + std::string(name) + "\"");
obj.inc_ref(); // PyModule_AddObject() steals a reference
PyModule_AddObject(ptr(), name, obj.ptr()); } };
NAMESPACE_BEGIN(detail) /// Generic support for creating new Python heap types
class generic_type : public object { template <typename...> friend class class_; public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(const type_record &rec) { if (rec.scope && hasattr(rec.scope, rec.name)) pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) + "\": an object with that name is already defined");
if (get_type_info(*rec.type)) pybind11_fail("generic_type: type \"" + std::string(rec.name) + "\" is already registered!");
m_ptr = make_new_python_type(rec);
/* Register supplemental type information in C++ dict */ auto *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) m_ptr; tinfo->type_size = rec.type_size; tinfo->operator_new = rec.operator_new; tinfo->init_holder = rec.init_holder; tinfo->dealloc = rec.dealloc;
auto &internals = get_internals(); auto tindex = std::type_index(*rec.type); tinfo->direct_conversions = &internals.direct_conversions[tindex]; tinfo->default_holder = rec.default_holder; internals.registered_types_cpp[tindex] = tinfo; internals.registered_types_py[m_ptr] = tinfo;
if (rec.bases.size() > 1 || rec.multiple_inheritance) mark_parents_nonsimple(tinfo->type); }
/// Helper function which tags all parents of a type using mult. inheritance
void mark_parents_nonsimple(PyTypeObject *value) { auto t = reinterpret_borrow<tuple>(value->tp_bases); for (handle h : t) { auto tinfo2 = get_type_info((PyTypeObject *) h.ptr()); if (tinfo2) tinfo2->simple_type = false; mark_parents_nonsimple((PyTypeObject *) h.ptr()); } }
void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; auto tinfo = detail::get_type_info(&type->ht_type);
if (!type->ht_type.tp_as_buffer) pybind11_fail( "To be able to register buffer protocol support for the type '" + std::string(tinfo->type->tp_name) + "' the associated class<>(..) invocation must " "include the pybind11::buffer_protocol() annotation!");
tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; }
void def_property_static_impl(const char *name, handle fget, handle fset, detail::function_record *rec_fget) { const auto is_static = !(rec_fget->is_method && rec_fget->scope); const auto has_doc = rec_fget->doc && pybind11::options::show_user_defined_docstrings();
auto property = handle((PyObject *) (is_static ? get_internals().static_property_type : &PyProperty_Type)); attr(name) = property(fget.ptr() ? fget : none(), fset.ptr() ? fset : none(), /*deleter*/none(), pybind11::str(has_doc ? rec_fget->doc : "")); } };
/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T, typename = void_t<decltype(static_cast<void *(*)(size_t)>(T::operator new))>> void set_operator_new(type_record *r) { r->operator_new = &T::operator new; }
template <typename> void set_operator_new(...) { }
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, typename = void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>> void call_operator_delete(T *p) { T::operator delete(p); }
inline void call_operator_delete(void *p) { ::operator delete(p); }
NAMESPACE_END(detail)
template <typename type_, typename... options> class class_ : public detail::generic_type { template <typename T> using is_holder = detail::is_holder_type<type_, T>; template <typename T> using is_subtype = detail::bool_constant<std::is_base_of<type_, T>::value && !std::is_same<T, type_>::value>; template <typename T> using is_base = detail::bool_constant<std::is_base_of<T, type_>::value && !std::is_same<T, type_>::value>; // struct instead of using here to help MSVC:
template <typename T> struct is_valid_class_option : detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};
public: using type = type_; using type_alias = detail::first_of_t<is_subtype, void, options...>; constexpr static bool has_alias = !std::is_void<type_alias>::value; using holder_type = detail::first_of_t<is_holder, std::unique_ptr<type>, options...>; using instance_type = detail::instance<type, holder_type>;
static_assert(detail::all_of<is_valid_class_option<options>...>::value, "Unknown/invalid class_ template parameters provided");
PYBIND11_OBJECT(class_, generic_type, PyType_Check)
template <typename... Extra> class_(handle scope, const char *name, const Extra &... extra) { using namespace detail;
// MI can only be specified via class_ template options, not constructor parameters
static_assert( none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
( constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
constexpr_sum(is_base<options>::value...) == 0 && // no template option bases
none_of<std::is_same<multiple_inheritance, Extra>...>::value), // no multiple_inheritance attr
"Error: multiple inheritance bases must be specified via class_ template options");
type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(conditional_t<has_alias, type_alias, type>); record.instance_size = sizeof(instance_type); record.init_holder = init_holder; record.dealloc = dealloc; record.default_holder = std::is_same<holder_type, std::unique_ptr<type>>::value;
set_operator_new<type>(&record);
/* Register base classes specified via template arguments to class_, if any */ bool unused[] = { (add_base<options>(record), false)..., false }; (void) unused;
/* Process optional arguments, if any */ process_attributes<Extra...>::init(extra..., &record);
generic_type::initialize(record);
if (has_alias) { auto &instances = get_internals().registered_types_cpp; instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; } }
template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0> static void add_base(detail::type_record &rec) { rec.add_base(&typeid(Base), [](void *src) -> void * { return static_cast<Base *>(reinterpret_cast<type *>(src)); }); }
template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0> static void add_base(detail::type_record &) { }
template <typename Func, typename... Extra> class_ &def(const char *name_, Func&& f, const Extra&... extra) { cpp_function cf(std::forward<Func>(f), name(name_), is_method(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; }
template <typename Func, typename... Extra> class_ & def_static(const char *name_, Func &&f, const Extra&... extra) { static_assert(!std::is_member_function_pointer<Func>::value, "def_static(...) called with a non-static member function pointer"); cpp_function cf(std::forward<Func>(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; }
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) { op.execute(*this, extra...); return *this; }
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) { op.execute_cast(*this, extra...); return *this; }
template <typename... Args, typename... Extra> class_ &def(const detail::init<Args...> &init, const Extra&... extra) { init.execute(*this, extra...); return *this; }
template <typename... Args, typename... Extra> class_ &def(const detail::init_alias<Args...> &init, const Extra&... extra) { init.execute(*this, extra...); return *this; }
template <typename Func> class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward<Func>(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::make_caster<type> caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; }
template <typename C, typename D, typename... Extra> class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)), fset([pm](C &c, const D &value) { c.*pm = value; }, is_method(*this)); def_property(name, fget, fset, return_value_policy::reference_internal, extra...); return *this; }
template <typename C, typename D, typename... Extra> class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)); def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); return *this; }
template <typename D, typename... Extra> class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)), fset([pm](object, const D &value) { *pm = value; }, scope(*this)); def_property_static(name, fget, fset, return_value_policy::reference, extra...); return *this; }
template <typename D, typename... Extra> class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)); def_property_readonly_static(name, fget, return_value_policy::reference, extra...); return *this; }
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename... Extra> class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly(name, cpp_function(fget), return_value_policy::reference_internal, extra...); }
/// Uses cpp_function's return_value_policy by default
template <typename... Extra> class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property(name, fget, cpp_function(), extra...); }
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra> class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...); }
/// Uses cpp_function's return_value_policy by default
template <typename... Extra> class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property_static(name, fget, cpp_function(), extra...); }
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename... Extra> class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property(name, cpp_function(fget), fset, return_value_policy::reference_internal, extra...); }
/// Uses cpp_function's return_value_policy by default
template <typename... Extra> class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, fget, fset, is_method(*this), extra...); }
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra> class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...); }
/// Uses cpp_function's return_value_policy by default
template <typename... Extra> class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ detail::process_attributes<Extra...>::init(extra..., rec_fget); if (rec_fget->doc && rec_fget->doc != doc_prev) { free(doc_prev); rec_fget->doc = strdup(rec_fget->doc); } if (rec_fset) { doc_prev = rec_fset->doc; detail::process_attributes<Extra...>::init(extra..., rec_fset); if (rec_fset->doc && rec_fset->doc != doc_prev) { free(doc_prev); rec_fset->doc = strdup(rec_fset->doc); } } def_property_static_impl(name, fget, fset, rec_fget); return *this; }
private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this
template <typename T> static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) { try { new (&inst->holder) holder_type(std::static_pointer_cast<typename holder_type::element_type>(inst->value->shared_from_this())); inst->holder_constructed = true; } catch (const std::bad_weak_ptr &) { if (inst->owned) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } }
static void init_holder_from_existing(instance_type *inst, const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) { new (&inst->holder) holder_type(*holder_ptr); }
static void init_holder_from_existing(instance_type *inst, const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) { new (&inst->holder) holder_type(std::move(*const_cast<holder_type *>(holder_ptr))); }
/// Initialize holder object, variant 2: try to construct from existing holder object, if possible
static void init_holder_helper(instance_type *inst, const holder_type *holder_ptr, const void * /* dummy */) { if (holder_ptr) { init_holder_from_existing(inst, holder_ptr, std::is_copy_constructible<holder_type>()); inst->holder_constructed = true; } else if (inst->owned || detail::always_construct_holder<holder_type>::value) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } }
/// Initialize holder object of an instance, possibly given a pointer to an existing holder
static void init_holder(PyObject *inst_, const void *holder_ptr) { auto inst = (instance_type *) inst_; init_holder_helper(inst, (const holder_type *) holder_ptr, inst->value); }
static void dealloc(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; if (inst->holder_constructed) inst->holder.~holder_type(); else if (inst->owned) detail::call_operator_delete(inst->value); }
static detail::function_record *get_function_record(handle h) { h = detail::get_function(h); return h ? (detail::function_record *) reinterpret_borrow<capsule>(PyCFunction_GET_SELF(h.ptr())) : nullptr; } };
/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> { public: using class_<Type>::def; using class_<Type>::def_property_readonly_static; using Scalar = typename std::underlying_type<Type>::type; template <typename T> using arithmetic_tag = std::is_same<T, arithmetic>;
template <typename... Extra> enum_(const handle &scope, const char *name, const Extra&... extra) : class_<Type>(scope, name, extra...), m_entries(), m_parent(scope) {
constexpr bool is_arithmetic = !std::is_same<detail::first_of_t<arithmetic_tag, void, Extra...>, void>::value;
auto m_entries_ptr = m_entries.inc_ref().ptr(); def("__repr__", [name, m_entries_ptr](Type value) -> pybind11::str { for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr)) { if (pybind11::cast<Type>(kv.second) == value) return pybind11::str("{}.{}").format(name, kv.first); } return pybind11::str("{}.???").format(name); }); def_property_readonly_static("__members__", [m_entries_ptr](object /* self */) { dict m; for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr)) m[kv.first] = kv.second; return m; }, return_value_policy::copy); def("__init__", [](Type& value, Scalar i) { value = (Type)i; }); def("__int__", [](Type value) { return (Scalar) value; }); def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; }); def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; }); def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; }); def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; }); def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; }); } if (std::is_convertible<Type, Scalar>::value) { // Don't provide comparison with the underlying type if the enum isn't convertible,
// i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly
// convert Type to Scalar below anyway because this needs to compile).
def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; }); def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; }); def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; }); def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; }); def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; }); def("__invert__", [](const Type &value) { return ~((Scalar) value); }); def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; }); def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; }); def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; }); } } def("__hash__", [](const Type &value) { return (Scalar) value; }); // Pickling and unpickling -- needed for use with the 'multiprocessing' module
def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); }); def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast<Scalar>()); }); }
/// Export enumeration entries into the parent scope
enum_& export_values() { for (const auto &kv : m_entries) m_parent.attr(kv.first) = kv.second; return *this; }
/// Add an enumeration entry
enum_& value(char const* name, Type value) { auto v = pybind11::cast(value, return_value_policy::copy); this->attr(name) = v; m_entries[pybind11::str(name)] = v; return *this; }
private: dict m_entries; handle m_parent; };
NAMESPACE_BEGIN(detail) template <typename... Args> struct init { template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; /// Function which calls a specific C++ in-place constructor
cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...); }
template <typename Class, typename... Extra, enable_if_t<Class::has_alias && std::is_constructible<typename Class::type, Args...>::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; using Alias = typename Class::type_alias; handle cl_type = cl; cl.def("__init__", [cl_type](handle self_, Args... args) { if (self_.get_type() == cl_type) new (self_.cast<Base *>()) Base(args...); else new (self_.cast<Alias *>()) Alias(args...); }, extra...); }
template <typename Class, typename... Extra, enable_if_t<Class::has_alias && !std::is_constructible<typename Class::type, Args...>::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { init_alias<Args...>::execute(cl, extra...); } }; template <typename... Args> struct init_alias { template <typename Class, typename... Extra, enable_if_t<Class::has_alias && std::is_constructible<typename Class::type_alias, Args...>::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Alias = typename Class::type_alias; cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...); } };
inline void keep_alive_impl(handle nurse, handle patient) { /* Clever approach based on weak references taken from Boost.Python */ if (!nurse || !patient) pybind11_fail("Could not activate keep_alive!");
if (patient.is_none() || nurse.is_none()) return; /* Nothing to keep alive or nothing to be kept alive by */
cpp_function disable_lifesupport( [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); });
weakref wr(nurse, disable_lifesupport);
patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); }
PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) { keep_alive_impl( Nurse == 0 ? ret : Nurse <= call.args.size() ? call.args[Nurse - 1] : handle(), Patient == 0 ? ret : Patient <= call.args.size() ? call.args[Patient - 1] : handle() ); }
template <typename Iterator, typename Sentinel, bool KeyIterator, return_value_policy Policy> struct iterator_state { Iterator it; Sentinel end; bool first; };
NAMESPACE_END(detail)
template <typename... Args> detail::init<Args...> init() { return detail::init<Args...>(); } template <typename... Args> detail::init_alias<Args...> init_alias() { return detail::init_alias<Args...>(); }
/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename ValueType = decltype(*std::declval<Iterator>()), typename... Extra> iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state<Iterator, Sentinel, false, Policy> state;
if (!detail::get_type_info(typeid(state), false)) { class_<state>(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> ValueType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return *s.it; }, std::forward<Extra>(extra)..., Policy); }
return (iterator) cast(state { first, last, true }); }
/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename KeyType = decltype((*std::declval<Iterator>()).first), typename... Extra> iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state<Iterator, Sentinel, true, Policy> state;
if (!detail::get_type_info(typeid(state), false)) { class_<state>(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> KeyType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return (*s.it).first; }, std::forward<Extra>(extra)..., Policy); }
return (iterator) cast(state { first, last, true }); }
/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) { return make_iterator<Policy>(std::begin(value), std::end(value), extra...); }
/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) { return make_key_iterator<Policy>(std::begin(value), std::end(value), extra...); }
template <typename InputType, typename OutputType> void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { if (!detail::make_caster<InputType>().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; };
if (auto tinfo = detail::get_type_info(typeid(OutputType))) tinfo->implicit_conversions.push_back(implicit_caster); else pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>()); }
template <typename ExceptionTranslator> void register_exception_translator(ExceptionTranslator&& translator) { detail::get_internals().registered_exception_translators.push_front( std::forward<ExceptionTranslator>(translator)); }
/* Wrapper to generate a new Python exception type.
* * This should only be used with PyErr_SetString for now. * It is not (yet) possible to use as a py::base. * Template type argument is reserved for future use. */ template <typename type> class exception : public object { public: exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { std::string full_name = scope.attr("__name__").cast<std::string>() + std::string(".") + name; m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base, NULL); if (hasattr(scope, name)) pybind11_fail("Error during initialization: multiple incompatible " "definitions with name \"" + std::string(name) + "\""); scope.attr(name) = *this; }
// Sets the current python exception to this exception object with the given message
void operator()(const char *message) { PyErr_SetString(m_ptr, message); } };
/** Registers a Python exception in `m` of the given `name` and installs an exception translator to
* translate the C++ exception to the created Python exception using the exceptions what() method. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template <typename CppException> exception<CppException> ®ister_exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { static exception<CppException> ex(scope, name, base); register_exception_translator([](std::exception_ptr p) { if (!p) return; try { std::rethrow_exception(p); } catch (const CppException &e) { ex(e.what()); } }); return ex; }
NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) { auto strings = tuple(args.size()); for (size_t i = 0; i < args.size(); ++i) { strings[i] = str(args[i]); } auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" "); auto line = sep.attr("join")(strings);
object file; if (kwargs.contains("file")) { file = kwargs["file"].cast<object>(); } else { try { file = module::import("sys").attr("stdout"); } catch (const error_already_set &) { /* If print() is called from code that is executed as
part of garbage collection during interpreter shutdown, importing 'sys' can fail. Give up rather than crashing the interpreter in this case. */ return; } }
auto write = file.attr("write"); write(line); write(kwargs.contains("end") ? kwargs["end"] : cast("\n"));
if (kwargs.contains("flush") && kwargs["flush"].cast<bool>()) file.attr("flush")(); } NAMESPACE_END(detail)
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args> void print(Args &&...args) { auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...); detail::print(c.args(), c.kwargs()); }
#if defined(WITH_THREAD) && !defined(PYPY_VERSION)
/* The functions below essentially reproduce the PyGILState_* API using a RAII
* pattern, but there are a few important differences: * * 1. When acquiring the GIL from an non-main thread during the finalization * phase, the GILState API blindly terminates the calling thread, which * is often not what is wanted. This API does not do this. * * 2. The gil_scoped_release function can optionally cut the relationship * of a PyThreadState and its associated thread, which allows moving it to * another thread (this is a fairly rare/advanced use case). * * 3. The reference count of an acquired thread state can be controlled. This * can be handy to prevent cases where callbacks issued from an external * thread would otherwise constantly construct and destroy thread state data * structures. * * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
* example which uses features 2 and 3 to migrate the Python thread of * execution to another thread (to run the event loop on the original thread, * in this case). */
class gil_scoped_acquire { public: PYBIND11_NOINLINE gil_scoped_acquire() { auto const &internals = detail::get_internals(); tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate);
if (!tstate) { tstate = PyThreadState_New(internals.istate); #if !defined(NDEBUG)
if (!tstate) pybind11_fail("scoped_acquire: could not create thread state!"); #endif
tstate->gilstate_counter = 0; #if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(internals.tstate); #endif
PyThread_set_key_value(internals.tstate, tstate); } else { release = detail::get_thread_state_unchecked() != tstate; }
if (release) { /* Work around an annoying assertion in PyThreadState_Swap */ #if defined(Py_DEBUG)
PyInterpreterState *interp = tstate->interp; tstate->interp = nullptr; #endif
PyEval_AcquireThread(tstate); #if defined(Py_DEBUG)
tstate->interp = interp; #endif
}
inc_ref(); }
void inc_ref() { ++tstate->gilstate_counter; }
PYBIND11_NOINLINE void dec_ref() { --tstate->gilstate_counter; #if !defined(NDEBUG)
if (detail::get_thread_state_unchecked() != tstate) pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!"); if (tstate->gilstate_counter < 0) pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!"); #endif
if (tstate->gilstate_counter == 0) { #if !defined(NDEBUG)
if (!release) pybind11_fail("scoped_acquire::dec_ref(): internal error!"); #endif
PyThreadState_Clear(tstate); PyThreadState_DeleteCurrent(); PyThread_delete_key_value(detail::get_internals().tstate); release = false; } }
PYBIND11_NOINLINE ~gil_scoped_acquire() { dec_ref(); if (release) PyEval_SaveThread(); } private: PyThreadState *tstate = nullptr; bool release = true; };
class gil_scoped_release { public: explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) { tstate = PyEval_SaveThread(); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(key); #else
PyThread_set_key_value(key, nullptr); #endif
} } ~gil_scoped_release() { if (!tstate) return; PyEval_RestoreThread(tstate); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(key); #endif
PyThread_set_key_value(key, tstate); } } private: PyThreadState *tstate; bool disassoc; }; #elif defined(PYPY_VERSION)
class gil_scoped_acquire { PyGILState_STATE state; public: gil_scoped_acquire() { state = PyGILState_Ensure(); } ~gil_scoped_acquire() { PyGILState_Release(state); } };
class gil_scoped_release { PyThreadState *state; public: gil_scoped_release() { state = PyEval_SaveThread(); } ~gil_scoped_release() { PyEval_RestoreThread(state); } }; #else
class gil_scoped_acquire { }; class gil_scoped_release { }; #endif
error_already_set::~error_already_set() { if (value) { gil_scoped_acquire gil; clear(); } }
inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { handle self = detail::get_object_handle(this_ptr, this_type); if (!self) return function(); handle type = self.get_type(); auto key = std::make_pair(type.ptr(), name);
/* Cache functions that aren't overloaded in Python to avoid
many costly Python dictionary lookups below */ auto &cache = detail::get_internals().inactive_overload_cache; if (cache.find(key) != cache.end()) return function();
function overload = getattr(self, name, function()); if (overload.is_cpp_function()) { cache.insert(key); return function(); }
/* Don't call dispatch code if invoked from overridden function.
Unfortunately this doesn't work on PyPy. */ #if !defined(PYPY_VERSION)
PyFrameObject *frame = PyThreadState_Get()->frame; if (frame && (std::string) str(frame->f_code->co_name) == name && frame->f_code->co_argcount > 0) { PyFrame_FastToLocals(frame); PyObject *self_caller = PyDict_GetItem( frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); if (self_caller == self.ptr()) return function(); } #else
/* PyPy currently doesn't provide a detailed cpyext emulation of
frame objects, so we have to emulate this using Python. This is going to be slow..*/ dict d; d["self"] = self; d["name"] = pybind11::str(name); PyObject *result = PyRun_String( "import inspect\n" "frame = inspect.currentframe()\n" "if frame is not None:\n" " frame = frame.f_back\n" " if frame is not None and str(frame.f_code.co_name) == name and " "frame.f_code.co_argcount > 0:\n" " self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n" " if self_caller == self:\n" " self = None\n", Py_file_input, d.ptr(), d.ptr()); if (result == nullptr) throw error_already_set(); if ((handle) d["self"] == Py_None) return function(); Py_DECREF(result); #endif
return overload; }
template <class T> function get_overload(const T *this_ptr, const char *name) { auto tinfo = detail::get_type_info(typeid(T)); return tinfo ? get_type_overload(this_ptr, tinfo, name) : function(); }
#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \
pybind11::gil_scoped_acquire gil; \ pybind11::function overload = pybind11::get_overload(static_cast<const cname *>(this), name); \ if (overload) { \ auto o = overload(__VA_ARGS__); \ if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \ static pybind11::detail::overload_caster_t<ret_type> caster; \ return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \ } \ else return pybind11::detail::cast_safe<ret_type>(std::move(o)); \ } \ }
#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ return cname::fn(__VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\"");
#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
# pragma warning(pop)
#elif defined(__INTEL_COMPILER)
/* Leave ignored warnings on */ #elif defined(__GNUG__) && !defined(__clang__)
# pragma GCC diagnostic pop
#endif
|