|
|
/*
pybind11/pybind11.h: Infrastructure for processing custom type and function attributes
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */
#pragma once
#include "cast.h"
NAMESPACE_BEGIN(pybind11)
/// \addtogroup annotations
/// @{
/// Annotation for methods
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
/// Annotation for operators
struct is_operator { };
/// Annotation for parent scope
struct scope { handle value; scope(const handle &s) : value(s) { } };
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
/// Annotation indicating that a class derives from another given type
template <typename T> struct base { PYBIND11_DEPRECATED("base<T>() was deprecated in favor of specifying 'T' as a template argument to class_") base() { } };
/// Keep patient alive while nurse lives
template <size_t Nurse, size_t Patient> struct keep_alive { };
/// Annotation indicating that a class is involved in a multiple inheritance relationship
struct multiple_inheritance { };
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr { };
/// Annotation which enables the buffer protocol for a type
struct buffer_protocol { };
/// Annotation which requests that a special metaclass is created for a type
struct metaclass { handle value;
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.") metaclass() = default;
/// Override pybind11's default metaclass
explicit metaclass(handle value) : value(value) { } };
/// Annotation to mark enums as an arithmetic type
struct arithmetic { };
/// @} annotations
NAMESPACE_BEGIN(detail) /* Forward declarations */ enum op_id : int; enum op_type : int; struct undefined_t; template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_; template <typename... Args> struct init; template <typename... Args> struct init_alias; inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record { const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
bool convert : 1; ///< True if the argument is allowed to convert when loading
argument_record(const char *name, const char *descr, handle value, bool convert) : name(name), descr(descr), value(value), convert(convert) { } };
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
struct function_record { function_record() : is_constructor(false), is_stateless(false), is_operator(false), has_args(false), has_kwargs(false), is_method(false) { }
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl) (function_call &) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data[3] = { };
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data) (function_record *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor : 1;
/// True if this is a stateless function pointer
bool is_stateless : 1;
/// True if this is an operator (__add__), etc.
bool is_operator : 1;
/// True if the function has a '*args' argument
bool has_args : 1;
/// True if the function has a '**kwargs' argument
bool has_kwargs : 1;
/// True if this is a method
bool is_method : 1;
/// Number of arguments (including py::args and/or py::kwargs, if present)
std::uint16_t nargs;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr; };
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record { PYBIND11_NOINLINE type_record() : multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false) { }
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// How large is pybind11::instance<type>?
size_t instance_size = 0;
/// The global operator new can be overridden with a class-specific variant
void *(*operator_new)(size_t) = ::operator new;
/// Function pointer to class_<..>::init_holder
void (*init_holder)(PyObject *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(PyObject *) = nullptr;
/// List of base classes of the newly created type
list bases;
/// Optional docstring
const char *doc = nullptr;
/// Custom metaclass (optional)
handle metaclass;
/// Multiple inheritance marker
bool multiple_inheritance : 1;
/// Does the class manage a __dict__?
bool dynamic_attr : 1;
/// Does the class implement the buffer protocol?
bool buffer_protocol : 1;
/// Is the default (unique_ptr) holder type used?
bool default_holder : 1;
PYBIND11_NOINLINE void add_base(const std::type_info *base, void *(*caster)(void *)) { auto base_info = detail::get_type_info(*base, false); if (!base_info) { std::string tname(base->name()); detail::clean_type_id(tname); pybind11_fail("generic_type: type \"" + std::string(name) + "\" referenced unknown base type \"" + tname + "\""); }
if (default_holder != base_info->default_holder) { std::string tname(base->name()); detail::clean_type_id(tname); pybind11_fail("generic_type: type \"" + std::string(name) + "\" " + (default_holder ? "does not have" : "has") + " a non-default holder type while its base \"" + tname + "\" " + (base_info->default_holder ? "does not" : "does")); }
bases.append((PyObject *) base_info->type);
if (base_info->type->tp_dictoffset != 0) dynamic_attr = true;
if (caster) base_info->implicit_casts.push_back(std::make_pair(type, caster)); } };
inline function_call::function_call(function_record &f, handle p) : func(f), parent(p) { args.reserve(f.nargs); args_convert.reserve(f.nargs); }
/**
* Partial template specializations to process custom attributes provided to * cpp_function_ and class_. These are either used to initialize the respective * fields in the type_record and function_record data structures or executed at * runtime to deal with custom call policies (e.g. keep_alive). */ template <typename T, typename SFINAE = void> struct process_attribute;
template <typename T> struct process_attribute_default { /// Default implementation: do nothing
static void init(const T &, function_record *) { } static void init(const T &, type_record *) { } static void precall(function_call &) { } static void postcall(function_call &, handle) { } };
/// Process an attribute specifying the function's name
template <> struct process_attribute<name> : process_attribute_default<name> { static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); } };
/// Process an attribute specifying the function's docstring
template <> struct process_attribute<doc> : process_attribute_default<doc> { static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); } };
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <> struct process_attribute<const char *> : process_attribute_default<const char *> { static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); } static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); } }; template <> struct process_attribute<char *> : process_attribute<const char *> { };
/// Process an attribute indicating the function's return value policy
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> { static void init(const return_value_policy &p, function_record *r) { r->policy = p; } };
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
template <> struct process_attribute<sibling> : process_attribute_default<sibling> { static void init(const sibling &s, function_record *r) { r->sibling = s.value; } };
/// Process an attribute which indicates that this function is a method
template <> struct process_attribute<is_method> : process_attribute_default<is_method> { static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; } };
/// Process an attribute which indicates the parent scope of a method
template <> struct process_attribute<scope> : process_attribute_default<scope> { static void init(const scope &s, function_record *r) { r->scope = s.value; } };
/// Process an attribute which indicates that this function is an operator
template <> struct process_attribute<is_operator> : process_attribute_default<is_operator> { static void init(const is_operator &, function_record *r) { r->is_operator = true; } };
/// Process a keyword argument attribute (*without* a default value)
template <> struct process_attribute<arg> : process_attribute_default<arg> { static void init(const arg &a, function_record *r) { if (r->is_method && r->args.empty()) r->args.emplace_back("self", nullptr, handle(), true /*convert*/); r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert); } };
/// Process a keyword argument attribute (*with* a default value)
template <> struct process_attribute<arg_v> : process_attribute_default<arg_v> { static void init(const arg_v &a, function_record *r) { if (r->is_method && r->args.empty()) r->args.emplace_back("self", nullptr /*descr*/, handle() /*parent*/, true /*convert*/);
if (!a.value) { #if !defined(NDEBUG)
std::string descr("'"); if (a.name) descr += std::string(a.name) + ": "; descr += a.type + "'"; if (r->is_method) { if (r->name) descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'"; else descr += " in method of '" + (std::string) str(r->scope) + "'"; } else if (r->name) { descr += " in function '" + (std::string) r->name + "'"; } pybind11_fail("arg(): could not convert default argument " + descr + " into a Python object (type not registered yet?)"); #else
pybind11_fail("arg(): could not convert default argument " "into a Python object (type not registered yet?). " "Compile in debug mode for more information."); #endif
} r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert); } };
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees that)
template <typename T> struct process_attribute<T, enable_if_t<is_pyobject<T>::value>> : process_attribute_default<handle> { static void init(const handle &h, type_record *r) { r->bases.append(h); } };
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
template <typename T> struct process_attribute<base<T>> : process_attribute_default<base<T>> { static void init(const base<T> &, type_record *r) { r->add_base(&typeid(T), nullptr); } };
/// Process a multiple inheritance attribute
template <> struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> { static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; } };
template <> struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> { static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; } };
template <> struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> { static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; } };
template <> struct process_attribute<metaclass> : process_attribute_default<metaclass> { static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; } };
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <> struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
/***
* Process a keep_alive call policy -- invokes keep_alive_impl during the * pre-call handler if both Nurse, Patient != 0 and use the post-call handler * otherwise */ template <size_t Nurse, size_t Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> { template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0> static void precall(function_call &call) { keep_alive_impl(Nurse, Patient, call, handle()); } template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0> static void postcall(function_call &, handle) { } template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0> static void precall(function_call &) { } template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0> static void postcall(function_call &call, handle ret) { keep_alive_impl(Nurse, Patient, call, ret); } };
/// Recursively iterate over variadic template arguments
template <typename... Args> struct process_attributes { static void init(const Args&... args, function_record *r) { int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... }; ignore_unused(unused); } static void init(const Args&... args, type_record *r) { int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... }; ignore_unused(unused); } static void precall(function_call &call) { int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(call), 0) ... }; ignore_unused(unused); } static void postcall(function_call &call, handle fn_ret) { int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0) ... }; ignore_unused(unused); } };
/// Check the number of named arguments at compile time
template <typename... Extra, size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...), size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)> constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) { return named == 0 || (self + named + has_args + has_kwargs) == nargs; }
NAMESPACE_END(detail) NAMESPACE_END(pybind11)
|