57 lines
2.1 KiB

  1. import stormpy
  2. import stormpy.core
  3. import stormpy.simulator
  4. import stormpy.shields
  5. import stormpy.examples
  6. import stormpy.examples.files
  7. from sklearn.linear_model import LogisticRegression
  8. from dtcontrol.benchmark_suite import BenchmarkSuite
  9. from dtcontrol.decision_tree.decision_tree import DecisionTree
  10. from dtcontrol.decision_tree.determinization.max_freq_determinizer import MaxFreqDeterminizer
  11. from dtcontrol.decision_tree.impurity.entropy import Entropy
  12. from dtcontrol.decision_tree.impurity.multi_label_entropy import MultiLabelEntropy
  13. from dtcontrol.decision_tree.splitting.axis_aligned import AxisAlignedSplittingStrategy
  14. from dtcontrol.decision_tree.splitting.linear_classifier import LinearClassifierSplittingStrategy
  15. from stormpy.decision_tree import create_decision_tree
  16. def export_shield_as_dot():
  17. path = stormpy.examples.files.prism_mdp_lava_simple
  18. formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
  19. program = stormpy.parse_prism_program(path)
  20. formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
  21. options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
  22. options.set_build_state_valuations(True)
  23. options.set_build_choice_labels(True)
  24. options.set_build_all_labels()
  25. options.set_build_with_choice_origins(True)
  26. model = stormpy.build_sparse_model_with_options(program, options)
  27. shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9)
  28. result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
  29. assert result.has_shield
  30. shield = result.shield
  31. filename = "preshield.storm.json"
  32. stormpy.shields.export_shield(model, shield, filename)
  33. output_folder = "pre_trees"
  34. name = 'pre_my_output'
  35. aa = AxisAlignedSplittingStrategy()
  36. aa.priority = 1
  37. classifiers = [DecisionTree([aa], Entropy(), name)]
  38. suite = create_decision_tree(filename, name=name , output_folder=output_folder, export_pdf=True, classifiers=classifiers)
  39. suite.display_html()
  40. if __name__ == '__main__':
  41. export_shield_as_dot()