You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

134 lines
6.5 KiB

#include "src/solver/NativeNondeterministicLinearEquationSolver.h"
#include <utility>
#include "src/settings/SettingsManager.h"
#include "src/utility/vector.h"
namespace storm {
namespace solver {
template<typename ValueType>
NativeNondeterministicLinearEquationSolver<ValueType>::NativeNondeterministicLinearEquationSolver() {
// Get the settings object to customize solving.
storm::settings::modules::NativeEquationSolverSettings const& settings = storm::settings::nativeEquationSolverSettings();
// Get appropriate settings.
maximalNumberOfIterations = settings.getMaximalIterationCount();
precision = settings.getPrecision();
relative = settings.getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative;
}
template<typename ValueType>
NativeNondeterministicLinearEquationSolver<ValueType>::NativeNondeterministicLinearEquationSolver(double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : precision(precision), relative(relative), maximalNumberOfIterations(maximalNumberOfIterations) {
// Intentionally left empty.
}
template<typename ValueType>
NondeterministicLinearEquationSolver<ValueType>* NativeNondeterministicLinearEquationSolver<ValueType>::clone() const {
return new NativeNondeterministicLinearEquationSolver<ValueType>(*this);
}
template<typename ValueType>
void NativeNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
// Set up the environment for the power method. If scratch memory was not provided, we need to create it.
bool multiplyResultMemoryProvided = true;
if (multiplyResult == nullptr) {
multiplyResult = new std::vector<ValueType>(A.getRowCount());
multiplyResultMemoryProvided = false;
}
std::vector<ValueType>* currentX = &x;
bool xMemoryProvided = true;
if (newX == nullptr) {
newX = new std::vector<ValueType>(x.size());
xMemoryProvided = false;
}
uint_fast64_t iterations = 0;
bool converged = false;
// Keep track of which of the vectors for x is the auxiliary copy.
std::vector<ValueType>* copyX = newX;
// Proceed with the iterations as long as the method did not converge or reach the
// user-specified maximum number of iterations.
while (!converged && iterations < maximalNumberOfIterations) {
// Compute x' = A*x + b.
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (minimize) {
storm::utility::vector::reduceVectorMin(*multiplyResult, *newX, A.getRowGroupIndices());
} else {
storm::utility::vector::reduceVectorMax(*multiplyResult, *newX, A.getRowGroupIndices());
}
// Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, precision, relative);
// Update environment variables.
std::swap(currentX, newX);
++iterations;
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations.");
}
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (currentX == copyX) {
std::swap(x, *currentX);
}
if (!xMemoryProvided) {
delete copyX;
}
if (!multiplyResultMemoryProvided) {
delete multiplyResult;
}
}
template<typename ValueType>
void NativeNondeterministicLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType>* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
// If scratch memory was not provided, we need to create it.
bool multiplyResultMemoryProvided = true;
if (multiplyResult == nullptr) {
multiplyResult = new std::vector<ValueType>(A.getRowCount());
multiplyResultMemoryProvided = false;
}
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
for (uint_fast64_t i = 0; i < n; ++i) {
A.multiplyWithVector(x, *multiplyResult);
// Add b if it is non-null.
if (b != nullptr) {
storm::utility::vector::addVectorsInPlace(*multiplyResult, *b);
}
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (minimize) {
storm::utility::vector::reduceVectorMin(*multiplyResult, x, A.getRowGroupIndices());
} else {
storm::utility::vector::reduceVectorMax(*multiplyResult, x, A.getRowGroupIndices());
}
}
if (!multiplyResultMemoryProvided) {
delete multiplyResult;
}
}
// Explicitly instantiate the solver.
template class NativeNondeterministicLinearEquationSolver<double>;
} // namespace solver
} // namespace storm