You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							652 lines
						
					
					
						
							35 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							652 lines
						
					
					
						
							35 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| #include <iostream> | |
| #include "common.h" | |
|  | |
| int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
| //   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; | |
|   typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*); | |
|   static functype func[12]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int i=0; i<12; ++i) | |
|       func[i] = 0; | |
|     func[NOTR  | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run); | |
|     func[ADJ   | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run); | |
|     func[NOTR  | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor>::run); | |
|     func[TR    | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor>::run); | |
|     func[ADJ   | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor>::run); | |
|     func[NOTR  | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor>::run); | |
|     func[TR    | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor>::run); | |
|     func[ADJ   | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor>::run); | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   int info = 0; | |
|   if(OP(*opa)==INVALID)                                               info = 1; | |
|   else if(OP(*opb)==INVALID)                                          info = 2; | |
|   else if(*m<0)                                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*k<0)                                                       info = 5; | |
|   else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k))                    info = 8; | |
|   else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n))                    info = 10; | |
|   else if(*ldc<std::max(1,*m))                                        info = 13; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6); | |
| 
 | |
|   if (*m == 0 || *n == 0) | |
|     return 0; | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); | |
|     else                matrix(c, *m, *n, *ldc) *= beta; | |
|   } | |
| 
 | |
|   if(*k == 0) | |
|     return 0; | |
| 
 | |
|   internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k,1,true); | |
| 
 | |
|   int code = OP(*opa) | (OP(*opb) << 2); | |
|   func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0); | |
|   return 0; | |
| } | |
| 
 | |
| int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb) | |
| { | |
| //   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, internal::level3_blocking<Scalar,Scalar>&); | |
|   static functype func[32]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int i=0; i<32; ++i) | |
|       func[i] = 0; | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,ColMajor,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,ColMajor,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,ColMajor,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,ColMajor,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          Conj, RowMajor,ColMajor>::run); | |
| 
 | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar  alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(SIDE(*side)==INVALID)                                            info = 1; | |
|   else if(UPLO(*uplo)==INVALID)                                       info = 2; | |
|   else if(OP(*opa)==INVALID)                                          info = 3; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 4; | |
|   else if(*m<0)                                                       info = 5; | |
|   else if(*n<0)                                                       info = 6; | |
|   else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9; | |
|   else if(*ldb<std::max(1,*m))                                        info = 11; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6); | |
| 
 | |
|   if(*m==0 || *n==0) | |
|     return 0; | |
| 
 | |
|   int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | |
|    | |
|   if(SIDE(*side)==LEFT) | |
|   { | |
|     internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false); | |
|     func[code](*m, *n, a, *lda, b, *ldb, blocking); | |
|   } | |
|   else | |
|   { | |
|     internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false); | |
|     func[code](*n, *m, a, *lda, b, *ldb, blocking); | |
|   } | |
| 
 | |
|   if(alpha!=Scalar(1)) | |
|     matrix(b,*m,*n,*ldb) *= alpha; | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| 
 | |
| // b = alpha*op(a)*b  for side = 'L'or'l' | |
| // b = alpha*b*op(a)  for side = 'R'or'r' | |
| int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb) | |
| { | |
| //   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; | |
|   typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&); | |
|   static functype func[32]; | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<32; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | |
| 
 | |
|     func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); | |
|     func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); | |
|     func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar  alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(SIDE(*side)==INVALID)                                            info = 1; | |
|   else if(UPLO(*uplo)==INVALID)                                       info = 2; | |
|   else if(OP(*opa)==INVALID)                                          info = 3; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 4; | |
|   else if(*m<0)                                                       info = 5; | |
|   else if(*n<0)                                                       info = 6; | |
|   else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9; | |
|   else if(*ldb<std::max(1,*m))                                        info = 11; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6); | |
| 
 | |
|   int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | |
| 
 | |
|   if(*m==0 || *n==0) | |
|     return 1; | |
| 
 | |
|   // FIXME find a way to avoid this copy | |
|   Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb); | |
|   matrix(b,*m,*n,*ldb).setZero(); | |
| 
 | |
|   if(SIDE(*side)==LEFT) | |
|   { | |
|     internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false); | |
|     func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking); | |
|   } | |
|   else | |
|   { | |
|     internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false); | |
|     func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking); | |
|   } | |
|   return 1; | |
| } | |
| 
 | |
| // c = alpha*a*b + beta*c  for side = 'L'or'l' | |
| // c = alpha*b*a + beta*c  for side = 'R'or'r | |
| int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
| //   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   int info = 0; | |
|   if(SIDE(*side)==INVALID)                                            info = 1; | |
|   else if(UPLO(*uplo)==INVALID)                                       info = 2; | |
|   else if(*m<0)                                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7; | |
|   else if(*ldb<std::max(1,*m))                                        info = 9; | |
|   else if(*ldc<std::max(1,*m))                                        info = 12; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); | |
|     else                matrix(c, *m, *n, *ldc) *= beta; | |
|   } | |
| 
 | |
|   if(*m==0 || *n==0) | |
|   { | |
|     return 1; | |
|   } | |
| 
 | |
|   #if ISCOMPLEX | |
|   // FIXME add support for symmetric complex matrix | |
|   int size = (SIDE(*side)==LEFT) ? (*m) : (*n); | |
|   Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size); | |
|   if(UPLO(*uplo)==UP) | |
|   { | |
|     matA.triangularView<Upper>() = matrix(a,size,size,*lda); | |
|     matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose(); | |
|   } | |
|   else if(UPLO(*uplo)==LO) | |
|   { | |
|     matA.triangularView<Lower>() = matrix(a,size,size,*lda); | |
|     matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose(); | |
|   } | |
|   if(SIDE(*side)==LEFT) | |
|     matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); | |
|   else if(SIDE(*side)==RIGHT) | |
|     matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; | |
|   #else | |
|   if(SIDE(*side)==LEFT) | |
|     if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | |
|     else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | |
|     else                      return 0; | |
|   else if(SIDE(*side)==RIGHT) | |
|     if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | |
|     else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | |
|     else                      return 0; | |
|   else | |
|     return 0; | |
|   #endif | |
|  | |
|   return 0; | |
| } | |
| 
 | |
| // c = alpha*a*a' + beta*c  for op = 'N'or'n' | |
| // c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c' | |
| int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
| //   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; | |
|   #if !ISCOMPLEX | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&); | |
|   static functype func[8]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int i=0; i<8; ++i) | |
|       func[i] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Upper>::run); | |
|     func[TR    | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Upper>::run); | |
|     func[ADJ   | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Upper>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Lower>::run); | |
|     func[TR    | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Lower>::run); | |
|     func[ADJ   | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Lower>::run); | |
| 
 | |
|     init = true; | |
|   } | |
|   #endif | |
|  | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*op)==INVALID)                                           info = 2; | |
|   else if(*n<0)                                                       info = 3; | |
|   else if(*k<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | |
|   else if(*ldc<std::max(1,*n))                                        info = 10; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | |
|     else | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | |
|   } | |
| 
 | |
|   if(*n==0 || *k==0) | |
|     return 0; | |
| 
 | |
|   #if ISCOMPLEX | |
|   // FIXME add support for symmetric complex matrix | |
|   if(UPLO(*uplo)==UP) | |
|   { | |
|     if(OP(*op)==NOTR) | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); | |
|     else | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); | |
|   } | |
|   else | |
|   { | |
|     if(OP(*op)==NOTR) | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); | |
|     else | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); | |
|   } | |
|   #else | |
|   int code = OP(*op) | (UPLO(*uplo) << 2); | |
|   func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); | |
|   #endif | |
|  | |
|   return 0; | |
| } | |
| 
 | |
| // c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n' | |
| // c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't' | |
| int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
| //   std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; | |
|  | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*op)==INVALID)                                           info = 2; | |
|   else if(*n<0)                                                       info = 3; | |
|   else if(*k<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | |
|   else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9; | |
|   else if(*ldc<std::max(1,*n))                                        info = 12; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | |
|     else | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | |
|   } | |
| 
 | |
|   if(*k==0) | |
|     return 1; | |
| 
 | |
|   if(OP(*op)==NOTR) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|     { | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() | |
|         += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() | |
|         +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); | |
|     } | |
|     else if(UPLO(*uplo)==LO) | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() | |
|         += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() | |
|         +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); | |
|   } | |
|   else if(OP(*op)==TR || OP(*op)==ADJ) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() | |
|         += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) | |
|         +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); | |
|     else if(UPLO(*uplo)==LO) | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() | |
|         += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) | |
|         +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); | |
|   } | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| 
 | |
| #if ISCOMPLEX | |
|  | |
| // c = alpha*a*b + beta*c  for side = 'L'or'l' | |
| // c = alpha*b*a + beta*c  for side = 'R'or'r | |
| int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
| //   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | |
|  | |
|   int info = 0; | |
|   if(SIDE(*side)==INVALID)                                            info = 1; | |
|   else if(UPLO(*uplo)==INVALID)                                       info = 2; | |
|   else if(*m<0)                                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7; | |
|   else if(*ldb<std::max(1,*m))                                        info = 9; | |
|   else if(*ldc<std::max(1,*m))                                        info = 12; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6); | |
| 
 | |
|   if(beta==Scalar(0))       matrix(c, *m, *n, *ldc).setZero(); | |
|   else if(beta!=Scalar(1))  matrix(c, *m, *n, *ldc) *= beta; | |
| 
 | |
|   if(*m==0 || *n==0) | |
|   { | |
|     return 1; | |
|   } | |
| 
 | |
|   if(SIDE(*side)==LEFT) | |
|   { | |
|     if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj,  ColMajor,false,false, ColMajor> | |
|                                 ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | |
|     else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor> | |
|                                 ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | |
|     else                      return 0; | |
|   } | |
|   else if(SIDE(*side)==RIGHT) | |
|   { | |
|     if(UPLO(*uplo)==UP)       matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj,  ColMajor> | |
|                                 ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);*/ | |
|     else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor> | |
|                                 ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | |
|     else                      return 0; | |
|   } | |
|   else | |
|   { | |
|     return 0; | |
|   } | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| // c = alpha*a*conj(a') + beta*c  for op = 'N'or'n' | |
| // c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c' | |
| int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
| //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; | |
|  | |
|   typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&); | |
|   static functype func[8]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int i=0; i<8; ++i) | |
|       func[i] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Upper>::run); | |
|     func[ADJ   | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Upper>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Lower>::run); | |
|     func[ADJ   | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Lower>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   RealScalar alpha = *palpha; | |
|   RealScalar beta  = *pbeta; | |
| 
 | |
| //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | |
|  | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2; | |
|   else if(*n<0)                                                       info = 3; | |
|   else if(*k<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | |
|   else if(*ldc<std::max(1,*n))                                        info = 10; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6); | |
| 
 | |
|   int code = OP(*op) | (UPLO(*uplo) << 2); | |
| 
 | |
|   if(beta!=RealScalar(1)) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | |
|     else | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | |
|    | |
|     if(beta!=Scalar(0)) | |
|     { | |
|       matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | |
|       matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | |
|     } | |
|   } | |
| 
 | |
|   if(*k>0 && alpha!=RealScalar(0)) | |
|   { | |
|     func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); | |
|     matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n' | |
| // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c,  for op = 'C'or'c' | |
| int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   RealScalar beta  = *pbeta; | |
| 
 | |
| //   std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; | |
|  | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2; | |
|   else if(*n<0)                                                       info = 3; | |
|   else if(*k<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | |
|   else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9; | |
|   else if(*ldc<std::max(1,*n))                                        info = 12; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6); | |
| 
 | |
|   if(beta!=RealScalar(1)) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | |
|     else | |
|       if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | |
|       else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | |
| 
 | |
|     if(beta!=Scalar(0)) | |
|     { | |
|       matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | |
|       matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | |
|     } | |
|   } | |
|   else if(*k>0 && alpha!=Scalar(0)) | |
|     matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | |
| 
 | |
|   if(*k==0) | |
|     return 1; | |
| 
 | |
|   if(OP(*op)==NOTR) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|     { | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() | |
|         +=            alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() | |
|         +  numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); | |
|     } | |
|     else if(UPLO(*uplo)==LO) | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() | |
|         += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() | |
|         +  numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); | |
|   } | |
|   else if(OP(*op)==ADJ) | |
|   { | |
|     if(UPLO(*uplo)==UP) | |
|       matrix(c, *n, *n, *ldc).triangularView<Upper>() | |
|         +=             alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) | |
|         +  numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); | |
|     else if(UPLO(*uplo)==LO) | |
|       matrix(c, *n, *n, *ldc).triangularView<Lower>() | |
|         +=             alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) | |
|         +  numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); | |
|   } | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| #endif // ISCOMPLEX
 |