You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							537 lines
						
					
					
						
							24 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							537 lines
						
					
					
						
							24 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "common.h" | |
|  | |
| template<typename Index, typename Scalar, int StorageOrder, bool ConjugateLhs, bool ConjugateRhs> | |
| struct general_matrix_vector_product_wrapper | |
| { | |
|   static void run(Index rows, Index cols,const Scalar *lhs, Index lhsStride, const Scalar *rhs, Index rhsIncr, Scalar* res, Index resIncr, Scalar alpha) | |
|   { | |
|     typedef internal::const_blas_data_mapper<Scalar,Index,StorageOrder> LhsMapper; | |
|     typedef internal::const_blas_data_mapper<Scalar,Index,RowMajor> RhsMapper; | |
|      | |
|     internal::general_matrix_vector_product | |
|         <Index,Scalar,LhsMapper,StorageOrder,ConjugateLhs,Scalar,RhsMapper,ConjugateRhs>::run( | |
|         rows, cols, LhsMapper(lhs, lhsStride), RhsMapper(rhs, rhsIncr), res, resIncr, alpha); | |
|   } | |
| }; | |
| 
 | |
| int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) | |
| { | |
|   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); | |
|   static functype func[4]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<4; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR] = (general_matrix_vector_product_wrapper<int,Scalar,ColMajor,false,false>::run); | |
|     func[TR  ] = (general_matrix_vector_product_wrapper<int,Scalar,RowMajor,false,false>::run); | |
|     func[ADJ ] = (general_matrix_vector_product_wrapper<int,Scalar,RowMajor,Conj ,false>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
|   Scalar* c = reinterpret_cast<Scalar*>(pc); | |
|   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   // check arguments | |
|   int info = 0; | |
|   if(OP(*opa)==INVALID)           info = 1; | |
|   else if(*m<0)                   info = 2; | |
|   else if(*n<0)                   info = 3; | |
|   else if(*lda<std::max(1,*m))    info = 6; | |
|   else if(*incb==0)               info = 8; | |
|   else if(*incc==0)               info = 11; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6); | |
| 
 | |
|   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) | |
|     return 0; | |
| 
 | |
|   int actual_m = *m; | |
|   int actual_n = *n; | |
|   int code = OP(*opa); | |
|   if(code!=NOTR) | |
|     std::swap(actual_m,actual_n); | |
| 
 | |
|   Scalar* actual_b = get_compact_vector(b,actual_n,*incb); | |
|   Scalar* actual_c = get_compact_vector(c,actual_m,*incc); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) make_vector(actual_c, actual_m).setZero(); | |
|     else                make_vector(actual_c, actual_m) *= beta; | |
|   } | |
| 
 | |
|   if(code>=4 || func[code]==0) | |
|     return 0; | |
| 
 | |
|   func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha); | |
| 
 | |
|   if(actual_b!=b) delete[] actual_b; | |
|   if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc); | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) | |
| { | |
|   typedef void (*functype)(int, const Scalar *, int, Scalar *); | |
|   static functype func[16]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<16; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*opa)==INVALID)                                          info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,*n))                                        info = 6; | |
|   else if(*incb==0)                                                   info = 8; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6); | |
| 
 | |
|   Scalar* actual_b = get_compact_vector(b,*n,*incb); | |
| 
 | |
|   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | |
|   func[code](*n, a, *lda, actual_b); | |
| 
 | |
|   if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb); | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| 
 | |
| 
 | |
| int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) | |
| { | |
|   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&); | |
|   static functype func[16]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<16; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* b = reinterpret_cast<Scalar*>(pb); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*opa)==INVALID)                                          info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*lda<std::max(1,*n))                                        info = 6; | |
|   else if(*incb==0)                                                   info = 8; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6); | |
| 
 | |
|   if(*n==0) | |
|     return 1; | |
| 
 | |
|   Scalar* actual_b = get_compact_vector(b,*n,*incb); | |
|   Matrix<Scalar,Dynamic,1> res(*n); | |
|   res.setZero(); | |
| 
 | |
|   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | |
|   if(code>=16 || func[code]==0) | |
|     return 0; | |
| 
 | |
|   func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); | |
| 
 | |
|   copy_back(res.data(),b,*n,*incb); | |
|   if(actual_b!=b) delete[] actual_b; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  GBMV  performs one of the matrix-vector operations | |
|   * | |
|   *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are vectors and A is an | |
|   *  m by n band matrix, with kl sub-diagonals and ku super-diagonals. | |
|   */ | |
| int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, | |
|                           RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta = *reinterpret_cast<Scalar*>(pbeta); | |
|   int coeff_rows = *kl+*ku+1; | |
| 
 | |
|   int info = 0; | |
|        if(OP(*trans)==INVALID)                                        info = 1; | |
|   else if(*m<0)                                                       info = 2; | |
|   else if(*n<0)                                                       info = 3; | |
|   else if(*kl<0)                                                      info = 4; | |
|   else if(*ku<0)                                                      info = 5; | |
|   else if(*lda<coeff_rows)                                            info = 8; | |
|   else if(*incx==0)                                                   info = 10; | |
|   else if(*incy==0)                                                   info = 13; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6); | |
| 
 | |
|   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) | |
|     return 0; | |
| 
 | |
|   int actual_m = *m; | |
|   int actual_n = *n; | |
|   if(OP(*trans)!=NOTR) | |
|     std::swap(actual_m,actual_n); | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,actual_n,*incx); | |
|   Scalar* actual_y = get_compact_vector(y,actual_m,*incy); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) make_vector(actual_y, actual_m).setZero(); | |
|     else                make_vector(actual_y, actual_m) *= beta; | |
|   } | |
| 
 | |
|   MatrixType mat_coeffs(a,coeff_rows,*n,*lda); | |
| 
 | |
|   int nb = std::min(*n,(*m)+(*ku)); | |
|   for(int j=0; j<nb; ++j) | |
|   { | |
|     int start = std::max(0,j - *ku); | |
|     int end = std::min((*m)-1,j + *kl); | |
|     int len = end - start + 1; | |
|     int offset = (*ku) - j + start; | |
|     if(OP(*trans)==NOTR) | |
|       make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); | |
|     else if(OP(*trans)==TR) | |
|       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value(); | |
|     else | |
|       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * make_vector(actual_x+start,len) ).value(); | |
|   } | |
| 
 | |
|   if(actual_x!=x) delete[] actual_x; | |
|   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| #if 0 | |
| /**  TBMV  performs one of the matrix-vector operations | |
|   * | |
|   *     x := A*x,   or   x := A'*x, | |
|   * | |
|   *  where x is an n element vector and  A is an n by n unit, or non-unit, | |
|   *  upper or lower triangular band matrix, with ( k + 1 ) diagonals. | |
|   */ | |
| int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   int coeff_rows = *k + 1; | |
|  | |
|   int info = 0; | |
|        if(UPLO(*uplo)==INVALID)                                       info = 1; | |
|   else if(OP(*opa)==INVALID)                                          info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*k<0)                                                       info = 5; | |
|   else if(*lda<coeff_rows)                                            info = 7; | |
|   else if(*incx==0)                                                   info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6); | |
|  | |
|   if(*n==0) | |
|     return 0; | |
|  | |
|   int actual_n = *n; | |
|  | |
|   Scalar* actual_x = get_compact_vector(x,actual_n,*incx); | |
|  | |
|   MatrixType mat_coeffs(a,coeff_rows,*n,*lda); | |
|  | |
|   int ku = UPLO(*uplo)==UPPER ? *k : 0; | |
|   int kl = UPLO(*uplo)==LOWER ? *k : 0; | |
|  | |
|   for(int j=0; j<*n; ++j) | |
|   { | |
|     int start = std::max(0,j - ku); | |
|     int end = std::min((*m)-1,j + kl); | |
|     int len = end - start + 1; | |
|     int offset = (ku) - j + start; | |
|  | |
|     if(OP(*trans)==NOTR) | |
|       make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); | |
|     else if(OP(*trans)==TR) | |
|       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value(); | |
|     else | |
|       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * make_vector(actual_x+start,len) ).value(); | |
|   } | |
|  | |
|   if(actual_x!=x) delete[] actual_x; | |
|   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); | |
|  | |
|   return 0; | |
| } | |
| #endif | |
|  | |
| /**  DTBSV  solves one of the systems of equations | |
|   * | |
|   *     A*x = b,   or   A'*x = b, | |
|   * | |
|   *  where b and x are n element vectors and A is an n by n unit, or | |
|   *  non-unit, upper or lower triangular band matrix, with ( k + 1 ) | |
|   *  diagonals. | |
|   * | |
|   *  No test for singularity or near-singularity is included in this | |
|   *  routine. Such tests must be performed before calling this routine. | |
|   */ | |
| int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) | |
| { | |
|   typedef void (*functype)(int, int, const Scalar *, int, Scalar *); | |
|   static functype func[16]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int i=0; i<16; ++i) | |
|       func[i] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,Conj, Scalar,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,Conj, Scalar,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   int coeff_rows = *k+1; | |
| 
 | |
|   int info = 0; | |
|        if(UPLO(*uplo)==INVALID)                                       info = 1; | |
|   else if(OP(*op)==INVALID)                                           info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*k<0)                                                       info = 5; | |
|   else if(*lda<coeff_rows)                                            info = 7; | |
|   else if(*incx==0)                                                   info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6); | |
| 
 | |
|   if(*n==0 || (*k==0 && DIAG(*diag)==UNIT)) | |
|     return 0; | |
| 
 | |
|   int actual_n = *n; | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,actual_n,*incx); | |
| 
 | |
|   int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | |
|   if(code>=16 || func[code]==0) | |
|     return 0; | |
| 
 | |
|   func[code](*n, *k, a, *lda, actual_x); | |
| 
 | |
|   if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| /**  DTPMV  performs one of the matrix-vector operations | |
|   * | |
|   *     x := A*x,   or   x := A'*x, | |
|   * | |
|   *  where x is an n element vector and  A is an n by n unit, or non-unit, | |
|   *  upper or lower triangular matrix, supplied in packed form. | |
|   */ | |
| int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) | |
| { | |
|   typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar); | |
|   static functype func[16]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<16; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* ap = reinterpret_cast<Scalar*>(pap); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*opa)==INVALID)                                          info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*incx==0)                                                   info = 7; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6); | |
| 
 | |
|   if(*n==0) | |
|     return 1; | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,*n,*incx); | |
|   Matrix<Scalar,Dynamic,1> res(*n); | |
|   res.setZero(); | |
| 
 | |
|   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | |
|   if(code>=16 || func[code]==0) | |
|     return 0; | |
| 
 | |
|   func[code](*n, ap, actual_x, res.data(), Scalar(1)); | |
| 
 | |
|   copy_back(res.data(),x,*n,*incx); | |
|   if(actual_x!=x) delete[] actual_x; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  DTPSV  solves one of the systems of equations | |
|   * | |
|   *     A*x = b,   or   A'*x = b, | |
|   * | |
|   *  where b and x are n element vectors and A is an n by n unit, or | |
|   *  non-unit, upper or lower triangular matrix, supplied in packed form. | |
|   * | |
|   *  No test for singularity or near-singularity is included in this | |
|   *  routine. Such tests must be performed before calling this routine. | |
|   */ | |
| int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) | |
| { | |
|   typedef void (*functype)(int, const Scalar*, Scalar*); | |
|   static functype func[16]; | |
| 
 | |
|   static bool init = false; | |
|   if(!init) | |
|   { | |
|     for(int k=0; k<16; ++k) | |
|       func[k] = 0; | |
| 
 | |
|     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); | |
|     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); | |
|     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); | |
| 
 | |
|     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); | |
|     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); | |
|     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); | |
| 
 | |
|     init = true; | |
|   } | |
| 
 | |
|   Scalar* ap = reinterpret_cast<Scalar*>(pap); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(OP(*opa)==INVALID)                                          info = 2; | |
|   else if(DIAG(*diag)==INVALID)                                       info = 3; | |
|   else if(*n<0)                                                       info = 4; | |
|   else if(*incx==0)                                                   info = 7; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6); | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,*n,*incx); | |
| 
 | |
|   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | |
|   func[code](*n, ap, actual_x); | |
| 
 | |
|   if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx); | |
| 
 | |
|   return 1; | |
| }
 |