You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
9.4 KiB
213 lines
9.4 KiB
#include "src/solver/NativeMinMaxLinearEquationSolver.h"
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
#include "src/settings/SettingsManager.h"
|
|
#include "src/settings/modules/NativeEquationSolverSettings.h"
|
|
#include "src/settings/modules/GeneralSettings.h"
|
|
#include "src/utility/vector.h"
|
|
#include "src/solver/NativeLinearEquationSolver.h"
|
|
|
|
namespace storm {
|
|
namespace solver {
|
|
|
|
template<typename ValueType>
|
|
NativeMinMaxLinearEquationSolver<ValueType>::NativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, MinMaxTechniqueSelection preferredTechnique, bool trackPolicy) :
|
|
MinMaxLinearEquationSolver<ValueType>(A, storm::settings::nativeEquationSolverSettings().getPrecision(), \
|
|
storm::settings::nativeEquationSolverSettings().getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative, \
|
|
storm::settings::nativeEquationSolverSettings().getMaximalIterationCount(), trackPolicy, preferredTechnique)
|
|
{
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
template<typename ValueType>
|
|
NativeMinMaxLinearEquationSolver<ValueType>::NativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, double precision, uint_fast64_t maximalNumberOfIterations, MinMaxTechniqueSelection tech, bool relative, bool trackPolicy) :
|
|
MinMaxLinearEquationSolver<ValueType>(A, precision, \
|
|
relative, \
|
|
maximalNumberOfIterations, trackPolicy, tech) {
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void NativeMinMaxLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
|
|
if (this->useValueIteration) {
|
|
// Set up the environment for the power method. If scratch memory was not provided, we need to create it.
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(this->A.getRowCount());
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
std::vector<ValueType>* currentX = &x;
|
|
bool xMemoryProvided = true;
|
|
if (newX == nullptr) {
|
|
newX = new std::vector<ValueType>(x.size());
|
|
xMemoryProvided = false;
|
|
}
|
|
uint_fast64_t iterations = 0;
|
|
bool converged = false;
|
|
|
|
// Keep track of which of the vectors for x is the auxiliary copy.
|
|
std::vector<ValueType>* copyX = newX;
|
|
|
|
// Proceed with the iterations as long as the method did not converge or reach the
|
|
// user-specified maximum number of iterations.
|
|
while (!converged && iterations < this->maximalNumberOfIterations) {
|
|
// Compute x' = A*x + b.
|
|
this->A.multiplyWithVector(*currentX, *multiplyResult);
|
|
storm::utility::vector::addVectors(*multiplyResult, b, *multiplyResult);
|
|
|
|
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
|
|
// element of the min/max operator stack.
|
|
storm::utility::vector::reduceVectorMinOrMax(minimize, *multiplyResult, *newX, this->A.getRowGroupIndices());
|
|
|
|
// Determine whether the method converged.
|
|
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, static_cast<ValueType>(this->precision), this->relative);
|
|
|
|
// Update environment variables.
|
|
std::swap(currentX, newX);
|
|
++iterations;
|
|
}
|
|
|
|
// Check if the solver converged and issue a warning otherwise.
|
|
if (converged) {
|
|
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
|
|
} else {
|
|
LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations.");
|
|
}
|
|
|
|
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
|
|
// is currently stored in currentX, but x is the output vector.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
if (!xMemoryProvided) {
|
|
delete copyX;
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
} else {
|
|
// We will use Policy Iteration to solve the given system.
|
|
// We first guess an initial choice resolution which will be refined after each iteration.
|
|
this->policy = std::vector<storm::storage::sparse::state_type>(this->A.getRowGroupIndices().size() - 1);
|
|
|
|
// Create our own multiplyResult for solving the deterministic sub-instances.
|
|
std::vector<ValueType> deterministicMultiplyResult(this->A.getRowGroupIndices().size() - 1);
|
|
std::vector<ValueType> subB(this->A.getRowGroupIndices().size() - 1);
|
|
|
|
// Check whether intermediate storage was provided and create it otherwise.
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(b.size());
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
|
|
std::vector<ValueType>* currentX = &x;
|
|
bool xMemoryProvided = true;
|
|
if (newX == nullptr) {
|
|
newX = new std::vector<ValueType>(x.size());
|
|
xMemoryProvided = false;
|
|
}
|
|
|
|
uint_fast64_t iterations = 0;
|
|
bool converged = false;
|
|
|
|
// Keep track of which of the vectors for x is the auxiliary copy.
|
|
std::vector<ValueType>* copyX = newX;
|
|
|
|
// Proceed with the iterations as long as the method did not converge or reach the user-specified maximum number
|
|
// of iterations.
|
|
while (!converged && iterations < this->maximalNumberOfIterations) {
|
|
// Take the sub-matrix according to the current choices
|
|
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(this->policy, true);
|
|
submatrix.convertToEquationSystem();
|
|
|
|
NativeLinearEquationSolver<ValueType> nativeLinearEquationSolver(submatrix);
|
|
storm::utility::vector::selectVectorValues<ValueType>(subB, this->policy, this->A.getRowGroupIndices(), b);
|
|
|
|
// Copy X since we will overwrite it
|
|
std::copy(currentX->begin(), currentX->end(), newX->begin());
|
|
|
|
// Solve the resulting linear equation system of the sub-instance for x under the current choices
|
|
nativeLinearEquationSolver.solveEquationSystem(*newX, subB, &deterministicMultiplyResult);
|
|
|
|
// Compute x' = A*x + b. This step is necessary to allow the choosing of the optimal policy for the next iteration.
|
|
this->A.multiplyWithVector(*newX, *multiplyResult);
|
|
storm::utility::vector::addVectors(*multiplyResult, b, *multiplyResult);
|
|
|
|
// Reduce the vector x by applying min/max over all nondeterministic choices.
|
|
// Here, we capture which choice was taken in each state, thereby refining our initial guess.
|
|
storm::utility::vector::reduceVectorMinOrMax(minimize, *multiplyResult, *newX, this->A.getRowGroupIndices(), &(this->policy));
|
|
|
|
|
|
// Determine whether the method converged.
|
|
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, static_cast<ValueType>(this->precision), this->relative);
|
|
|
|
// Update environment variables.
|
|
std::swap(currentX, newX);
|
|
++iterations;
|
|
}
|
|
|
|
// Check if the solver converged and issue a warning otherwise.
|
|
if (converged) {
|
|
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
|
|
} else {
|
|
LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations.");
|
|
}
|
|
|
|
|
|
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
|
|
// is currently stored in currentX, but x is the output vector.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
if (!xMemoryProvided) {
|
|
delete copyX;
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void NativeMinMaxLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(bool minimize, std::vector<ValueType>& x, std::vector<ValueType>* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
|
|
|
|
// If scratch memory was not provided, we need to create it.
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(this->A.getRowCount());
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
for (uint_fast64_t i = 0; i < n; ++i) {
|
|
this->A.multiplyWithVector(x, *multiplyResult);
|
|
|
|
// Add b if it is non-null.
|
|
if (b != nullptr) {
|
|
storm::utility::vector::addVectors(*multiplyResult, *b, *multiplyResult);
|
|
}
|
|
|
|
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
|
|
// element of the min/max operator stack.
|
|
storm::utility::vector::reduceVectorMinOrMax(minimize, *multiplyResult, x, this->A.getRowGroupIndices());
|
|
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
}
|
|
|
|
// Explicitly instantiate the solver.
|
|
template class NativeMinMaxLinearEquationSolver<double>;
|
|
template class NativeMinMaxLinearEquationSolver<float>;
|
|
} // namespace solver
|
|
} // namespace storm
|