You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

576 lines
16 KiB

/* bfd.c (LP basis factorization driver) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#if 0 /* 27/IV-2013 */
#include "glpfhv.h"
#else
#include "fhvint.h"
#endif
#include "glplpf.h"
#include "prob.h"
/* CAUTION: DO NOT CHANGE THE LIMIT BELOW */
#define M_MAX 100000000 /* = 100*10^6 */
/* maximal order of the basis matrix */
struct BFD
{ /* LP basis factorization */
int valid;
/* factorization is valid only if this flag is set */
int type;
/* factorization type:
GLP_BF_FT - LUF + Forrest-Tomlin
GLP_BF_BG - LUF + Schur compl. + Bartels-Golub
GLP_BF_GR - LUF + Schur compl. + Givens rotation */
#if 0 /* 27/IV-2013 */
FHV *fhv;
/* LP basis factorization (GLP_BF_FT) */
#else
FHVINT *fi;
/* interface to FHV-factorization (GLP_BF_FT) */
#endif
LPF *lpf;
/* LP basis factorization (GLP_BF_BG, GLP_BF_GR) */
int lu_size; /* luf.sv_size */
double piv_tol; /* luf.piv_tol */
int piv_lim; /* luf.piv_lim */
int suhl; /* luf.suhl */
double eps_tol; /* luf.eps_tol */
double max_gro; /* luf.max_gro */
int nfs_max; /* fhv.hh_max */
double upd_tol; /* fhv.upd_tol */
int nrs_max; /* lpf.n_max */
int rs_size; /* lpf.v_size */
/* internal control parameters */
int upd_lim;
/* the factorization update limit */
int upd_cnt;
/* the factorization update count */
};
/***********************************************************************
* NAME
*
* bfd_create_it - create LP basis factorization
*
* SYNOPSIS
*
* #include "glpbfd.h"
* BFD *bfd_create_it(void);
*
* DESCRIPTION
*
* The routine bfd_create_it creates a program object, which represents
* a factorization of LP basis.
*
* RETURNS
*
* The routine bfd_create_it returns a pointer to the object created. */
BFD *bfd_create_it(void)
{ BFD *bfd;
bfd = xmalloc(sizeof(BFD));
bfd->valid = 0;
bfd->type = GLP_BF_FT;
#if 0 /* 27/IV-2013 */
bfd->fhv = NULL;
#else
bfd->fi = NULL;
#endif
bfd->lpf = NULL;
bfd->lu_size = 0;
bfd->piv_tol = 0.10;
bfd->piv_lim = 4;
bfd->suhl = 1;
bfd->eps_tol = 1e-15;
bfd->max_gro = 1e+10;
bfd->nfs_max = 100;
bfd->upd_tol = 1e-6;
bfd->nrs_max = 100;
bfd->rs_size = 1000;
bfd->upd_lim = -1;
bfd->upd_cnt = 0;
return bfd;
}
/**********************************************************************/
void bfd_set_parm(BFD *bfd, const void *_parm)
{ /* change LP basis factorization control parameters */
const glp_bfcp *parm = _parm;
xassert(bfd != NULL);
bfd->type = parm->type;
bfd->lu_size = parm->lu_size;
bfd->piv_tol = parm->piv_tol;
bfd->piv_lim = parm->piv_lim;
bfd->suhl = parm->suhl;
bfd->eps_tol = parm->eps_tol;
bfd->max_gro = parm->max_gro;
bfd->nfs_max = parm->nfs_max;
bfd->upd_tol = parm->upd_tol;
bfd->nrs_max = parm->nrs_max;
bfd->rs_size = parm->rs_size;
return;
}
/***********************************************************************
* NAME
*
* bfd_factorize - compute LP basis factorization
*
* SYNOPSIS
*
* #include "glpbfd.h"
* int bfd_factorize(BFD *bfd, int m, int bh[], int (*col)(void *info,
* int j, int ind[], double val[]), void *info);
*
* DESCRIPTION
*
* The routine bfd_factorize computes the factorization of the basis
* matrix B specified by the routine col.
*
* The parameter bfd specified the basis factorization data structure
* created with the routine bfd_create_it.
*
* The parameter m specifies the order of B, m > 0.
*
* The array bh specifies the basis header: bh[j], 1 <= j <= m, is the
* number of j-th column of B in some original matrix. The array bh is
* optional and can be specified as NULL.
*
* The formal routine col specifies the matrix B to be factorized. To
* obtain j-th column of A the routine bfd_factorize calls the routine
* col with the parameter j (1 <= j <= n). In response the routine col
* should store row indices and numerical values of non-zero elements
* of j-th column of B to locations ind[1,...,len] and val[1,...,len],
* respectively, where len is the number of non-zeros in j-th column
* returned on exit. Neither zero nor duplicate elements are allowed.
*
* The parameter info is a transit pointer passed to the routine col.
*
* RETURNS
*
* 0 The factorization has been successfully computed.
*
* BFD_ESING
* The specified matrix is singular within the working precision.
*
* BFD_ECOND
* The specified matrix is ill-conditioned.
*
* For more details see comments to the routine luf_factorize. */
int bfd_factorize(BFD *bfd, int m, const int bh[], int (*col)
(void *info, int j, int ind[], double val[]), void *info)
#if 0 /* 06/VI-2013 */
{ LUF *luf;
#else
{
#endif
int nov, ret;
xassert(bfd != NULL);
xassert(1 <= m && m <= M_MAX);
/* invalidate the factorization */
bfd->valid = 0;
/* create the factorization, if necessary */
nov = 0;
switch (bfd->type)
{ case GLP_BF_FT:
if (bfd->lpf != NULL)
lpf_delete_it(bfd->lpf), bfd->lpf = NULL;
#if 0 /* 27/IV-2013 */
if (bfd->fhv == NULL)
bfd->fhv = fhv_create_it(), nov = 1;
#else
if (bfd->fi == NULL)
bfd->fi = fhvint_create(), nov = 1;
#endif
break;
case GLP_BF_BG:
case GLP_BF_GR:
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
fhv_delete_it(bfd->fhv), bfd->fhv = NULL;
#else
if (bfd->fi != NULL)
fhvint_delete(bfd->fi), bfd->fi = NULL;
#endif
if (bfd->lpf == NULL)
bfd->lpf = lpf_create_it(), nov = 1;
break;
default:
xassert(bfd != bfd);
}
#if 0 /* 06/VI-2013 */
/* set control parameters specific to LUF */
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
luf = bfd->fhv->luf;
#else
if (bfd->fi != NULL)
goto skip;
#endif
else if (bfd->lpf != NULL)
luf = bfd->lpf->luf;
else
xassert(bfd != bfd);
if (nov) luf->new_sva = bfd->lu_size;
luf->piv_tol = bfd->piv_tol;
luf->piv_lim = bfd->piv_lim;
luf->suhl = bfd->suhl;
luf->eps_tol = bfd->eps_tol;
luf->max_gro = bfd->max_gro;
#endif
#if 0 /* 27/IV-2013 */
/* set control parameters specific to FHV */
if (bfd->fhv != NULL)
{ if (nov) bfd->fhv->hh_max = bfd->nfs_max;
bfd->fhv->upd_tol = bfd->upd_tol;
}
#endif
/* set control parameters specific to LPF */
if (bfd->lpf != NULL)
{ if (nov) bfd->lpf->n_max = bfd->nrs_max;
if (nov) bfd->lpf->v_size = bfd->rs_size;
}
#if 0 /* 27/IV-2013 */
/* try to factorize the basis matrix */
if (bfd->fhv != NULL)
{ switch (fhv_factorize(bfd->fhv, m, col, info))
{ case 0:
break;
case FHV_ESING:
ret = BFD_ESING;
goto done;
case FHV_ECOND:
ret = BFD_ECOND;
goto done;
default:
xassert(bfd != bfd);
}
}
#else
skip: /* try to factorize the basis matrix */
if (bfd->fi != NULL)
{ /* FIXME */
if (fhvint_factorize(bfd->fi, m, col, info) != 0)
{ ret = BFD_ESING;
goto done;
}
/* printf("*** FACTORIZED; m = %d ***\n", m); */
}
#endif
else if (bfd->lpf != NULL)
{ switch (lpf_factorize(bfd->lpf, m, bh, col, info))
{ case 0:
/* set the Schur complement update type */
switch (bfd->type)
{ case GLP_BF_BG:
/* Bartels-Golub update */
#if 0 /* 11/VIII-2013 */
bfd->lpf->scf->t_opt = SCF_TBG;
#else
bfd->lpf->t_opt = SCF_TBG;
#endif
break;
case GLP_BF_GR:
/* Givens rotations update */
#if 0 /* 11/VIII-2013 */
bfd->lpf->scf->t_opt = SCF_TGR;
#else
bfd->lpf->t_opt = SCF_TGR;
#endif
break;
default:
xassert(bfd != bfd);
}
break;
case LPF_ESING:
ret = BFD_ESING;
goto done;
case LPF_ECOND:
ret = BFD_ECOND;
goto done;
default:
xassert(bfd != bfd);
}
}
else
xassert(bfd != bfd);
/* the basis matrix has been successfully factorized */
bfd->valid = 1;
bfd->upd_cnt = 0;
ret = 0;
done: /* return to the calling program */
return ret;
}
/***********************************************************************
* NAME
*
* bfd_ftran - perform forward transformation (solve system B*x = b)
*
* SYNOPSIS
*
* #include "glpbfd.h"
* void bfd_ftran(BFD *bfd, double x[]);
*
* DESCRIPTION
*
* The routine bfd_ftran performs forward transformation, i.e. solves
* the system B*x = b, where B is the basis matrix, x is the vector of
* unknowns to be computed, b is the vector of right-hand sides.
*
* On entry elements of the vector b should be stored in dense format
* in locations x[1], ..., x[m], where m is the number of rows. On exit
* the routine stores elements of the vector x in the same locations. */
void bfd_ftran(BFD *bfd, double x[])
{ xassert(bfd != NULL);
xassert(bfd->valid);
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
fhv_ftran(bfd->fhv, x);
#else
if (bfd->fi != NULL)
fhvint_ftran(bfd->fi, x);
#endif
else if (bfd->lpf != NULL)
lpf_ftran(bfd->lpf, x);
else
xassert(bfd != bfd);
return;
}
/***********************************************************************
* NAME
*
* bfd_btran - perform backward transformation (solve system B'*x = b)
*
* SYNOPSIS
*
* #include "glpbfd.h"
* void bfd_btran(BFD *bfd, double x[]);
*
* DESCRIPTION
*
* The routine bfd_btran performs backward transformation, i.e. solves
* the system B'*x = b, where B' is a matrix transposed to the basis
* matrix B, x is the vector of unknowns to be computed, b is the vector
* of right-hand sides.
*
* On entry elements of the vector b should be stored in dense format
* in locations x[1], ..., x[m], where m is the number of rows. On exit
* the routine stores elements of the vector x in the same locations. */
void bfd_btran(BFD *bfd, double x[])
{ xassert(bfd != NULL);
xassert(bfd->valid);
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
fhv_btran(bfd->fhv, x);
#else
if (bfd->fi != NULL)
fhvint_btran(bfd->fi, x);
#endif
else if (bfd->lpf != NULL)
lpf_btran(bfd->lpf, x);
else
xassert(bfd != bfd);
return;
}
/***********************************************************************
* NAME
*
* bfd_update_it - update LP basis factorization
*
* SYNOPSIS
*
* #include "glpbfd.h"
* int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[],
* const double val[]);
*
* DESCRIPTION
*
* The routine bfd_update_it updates the factorization of the basis
* matrix B after replacing its j-th column by a new vector.
*
* The parameter j specifies the number of column of B, which has been
* replaced, 1 <= j <= m, where m is the order of B.
*
* The parameter bh specifies the basis header entry for the new column
* of B, which is the number of the new column in some original matrix.
* This parameter is optional and can be specified as 0.
*
* Row indices and numerical values of non-zero elements of the new
* column of B should be placed in locations ind[1], ..., ind[len] and
* val[1], ..., val[len], resp., where len is the number of non-zeros
* in the column. Neither zero nor duplicate elements are allowed.
*
* RETURNS
*
* 0 The factorization has been successfully updated.
*
* BFD_ESING
* New basis matrix is singular within the working precision.
*
* BFD_ECHECK
* The factorization is inaccurate.
*
* BFD_ELIMIT
* Factorization update limit has been reached.
*
* BFD_EROOM
* Overflow of the sparse vector area.
*
* In case of non-zero return code the factorization becomes invalid.
* It should not be used until it has been recomputed with the routine
* bfd_factorize. */
int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[],
const double val[])
{ int ret;
xassert(bfd != NULL);
xassert(bfd->valid);
/* try to update the factorization */
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
{ switch (fhv_update_it(bfd->fhv, j, len, ind, val))
{ case 0:
break;
case FHV_ESING:
bfd->valid = 0;
ret = BFD_ESING;
goto done;
case FHV_ECHECK:
bfd->valid = 0;
ret = BFD_ECHECK;
goto done;
case FHV_ELIMIT:
bfd->valid = 0;
ret = BFD_ELIMIT;
goto done;
case FHV_EROOM:
bfd->valid = 0;
ret = BFD_EROOM;
goto done;
default:
xassert(bfd != bfd);
}
}
#else
if (bfd->fi != NULL)
{ /* see fhv_ft_update for return codes */
switch (fhvint_update(bfd->fi, j, len, ind, val))
{ case 0:
break;
case 1:
bfd->valid = 0;
ret = BFD_ESING;
goto done;
case 2:
case 3:
case 5:
bfd->valid = 0;
ret = BFD_ECHECK;
goto done;
case 4:
bfd->valid = 0;
ret = BFD_ELIMIT;
goto done;
default:
xassert(bfd != bfd);
}
}
#endif
else if (bfd->lpf != NULL)
{ switch (lpf_update_it(bfd->lpf, j, bh, len, ind, val))
{ case 0:
break;
case LPF_ESING:
bfd->valid = 0;
ret = BFD_ESING;
goto done;
case LPF_ELIMIT:
bfd->valid = 0;
ret = BFD_ELIMIT;
goto done;
default:
xassert(bfd != bfd);
}
}
else
xassert(bfd != bfd);
/* the factorization has been successfully updated */
/* increase the update count */
bfd->upd_cnt++;
ret = 0;
done: /* return to the calling program */
return ret;
}
/**********************************************************************/
int bfd_get_count(BFD *bfd)
{ /* determine factorization update count */
xassert(bfd != NULL);
xassert(bfd->valid);
return bfd->upd_cnt;
}
/***********************************************************************
* NAME
*
* bfd_delete_it - delete LP basis factorization
*
* SYNOPSIS
*
* #include "glpbfd.h"
* void bfd_delete_it(BFD *bfd);
*
* DESCRIPTION
*
* The routine bfd_delete_it deletes LP basis factorization specified
* by the parameter fhv and frees all memory allocated to this program
* object. */
void bfd_delete_it(BFD *bfd)
{ xassert(bfd != NULL);
#if 0 /* 27/IV-2013 */
if (bfd->fhv != NULL)
fhv_delete_it(bfd->fhv);
#else
if (bfd->fi != NULL)
fhvint_delete(bfd->fi);
#endif
if (bfd->lpf != NULL)
lpf_delete_it(bfd->lpf);
xfree(bfd);
return;
}
/* eof */