You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							305 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							305 lines
						
					
					
						
							11 KiB
						
					
					
				| #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | |
| #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | |
|  | |
| typedef int TensorIndex; | |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | |
|  | |
| #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" | |
| #include "testing/base/public/benchmark.h" | |
|  | |
| using StormEigen::Tensor; | |
| using StormEigen::TensorMap; | |
| 
 | |
| 
 | |
| // TODO(bsteiner): also templatize on the input type since we have users | |
| // for int8 as well as floats. | |
| template <typename Device> class BenchmarkSuite { | |
|  public: | |
|   BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) | |
|       : m_(m), k_(k), n_(n), device_(device) { | |
|     initialize(); | |
|   } | |
| 
 | |
|   BenchmarkSuite(const Device& device, size_t m) | |
|       : m_(m), k_(m), n_(m), device_(device) { | |
|     initialize(); | |
|   } | |
| 
 | |
|   ~BenchmarkSuite() { | |
|     device_.deallocate(a_); | |
|     device_.deallocate(b_); | |
|     device_.deallocate(c_); | |
|   } | |
| 
 | |
|   void memcpy(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       device_.memcpy(c_, a_, m_ * m_ * sizeof(float)); | |
|     } | |
|     // Record the number of values copied per second | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   void random(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> sizes(m_, m_); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizes); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = C.random(); | |
|     } | |
|     // Record the number of random numbers generated per second | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   void slicing(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> sizes(m_, m_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, sizes); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, sizes); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizes); | |
| 
 | |
|     const StormEigen::DSizes<TensorIndex, 2> quarter_sizes(StormEigen::array<TensorIndex, 2>(m_/2, m_/2)); | |
|     const StormEigen::DSizes<TensorIndex, 2> first_quadrant(StormEigen::array<TensorIndex, 2>(0, 0)); | |
|     const StormEigen::DSizes<TensorIndex, 2> second_quadrant(StormEigen::array<TensorIndex, 2>(0, m_/2)); | |
|     const StormEigen::DSizes<TensorIndex, 2> third_quadrant(StormEigen::array<TensorIndex, 2>(m_/2, 0)); | |
|     const StormEigen::DSizes<TensorIndex, 2> fourth_quadrant(StormEigen::array<TensorIndex, 2>(m_/2, m_/2)); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.slice(first_quadrant, quarter_sizes).device(device_) = | |
|           A.slice(first_quadrant, quarter_sizes); | |
|       C.slice(second_quadrant, quarter_sizes).device(device_) = | |
|           B.slice(second_quadrant, quarter_sizes); | |
|       C.slice(third_quadrant, quarter_sizes).device(device_) = | |
|           A.slice(third_quadrant, quarter_sizes); | |
|       C.slice(fourth_quadrant, quarter_sizes).device(device_) = | |
|           B.slice(fourth_quadrant, quarter_sizes); | |
|     } | |
|     // Record the number of values copied from the rhs slice to the lhs slice | |
|     // each second | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   void shuffling(int num_iters) { | |
|     eigen_assert(m_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> size_a(m_, k_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, size_a); | |
|     const StormEigen::array<TensorIndex, 2> size_b(k_, m_); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, size_b); | |
| 
 | |
|     const StormEigen::array<int, 2> shuffle(1, 0); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       B.device(device_) = A.shuffle(shuffle); | |
|     } | |
|     // Record the number of values shuffled from A and copied to B each second | |
|     finalizeBenchmark(m_ * k_ * num_iters); | |
|   } | |
| 
 | |
|  void padding(int num_iters) { | |
|     eigen_assert(m_ == k_); | |
|     const StormEigen::array<TensorIndex, 2> size_a(m_, k_-3); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, size_a); | |
|     const StormEigen::array<TensorIndex, 2> size_b(k_, m_); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, size_b); | |
| 
 | |
|     StormEigen::array<StormEigen::IndexPair<TensorIndex>, 2> paddings; | |
|     paddings[0] = StormEigen::IndexPair<TensorIndex>(0, 0); | |
|     paddings[1] = StormEigen::IndexPair<TensorIndex>(2, 1); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       B.device(device_) = A.pad(paddings); | |
|     } | |
|     // Record the number of values copied from the padded tensor A each second | |
|     finalizeBenchmark(m_ * k_ * num_iters); | |
|   } | |
| 
 | |
|  void striding(int num_iters) { | |
|     eigen_assert(m_ == k_); | |
|     const StormEigen::array<TensorIndex, 2> size_a(m_, k_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, size_a); | |
|     const StormEigen::array<TensorIndex, 2> size_b(m_, k_ / 2); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, size_b); | |
| 
 | |
|     const StormEigen::array<TensorIndex, 2> strides(1, 2); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       B.device(device_) = A.stride(strides); | |
|     } | |
|     // Record the number of values copied from the padded tensor A each second | |
|     finalizeBenchmark(m_ * k_ * num_iters); | |
|   } | |
| 
 | |
|   void broadcasting(int num_iters) { | |
|     const StormEigen::array<TensorIndex, 2> size_a(m_, 1); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, size_a); | |
|     const StormEigen::array<TensorIndex, 2> size_c(m_, n_); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, size_c); | |
| 
 | |
| #if defined(__CUDACC__) | |
|     // nvcc doesn't support cxx11 | |
|     const StormEigen::array<int, 2> broadcast(1, n_); | |
| #else | |
|     // Take advantage of cxx11 to give the compiler information it can use to | |
|     // optimize the code. | |
|     StormEigen::IndexList<StormEigen::type2index<1>, int> broadcast; | |
|     broadcast.set(1, n_); | |
| #endif | |
|  | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A.broadcast(broadcast); | |
|     } | |
|     // Record the number of values broadcasted from A and copied to C each second | |
|     finalizeBenchmark(m_ * n_ * num_iters); | |
|   } | |
| 
 | |
|   void coeffWiseOp(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> sizes(m_, m_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, sizes); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, sizes); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizes); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7); | |
|     } | |
|     // Record the number of FLOP executed per second (2 multiplications and | |
|     // 1 addition per value) | |
|     finalizeBenchmark(3 * m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   void algebraicFunc(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> sizes(m_, m_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, sizes); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, sizes); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizes); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); | |
|     } | |
|     // Record the number of FLOP executed per second (assuming one operation | |
|     // per value) | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   void transcendentalFunc(int num_iters) { | |
|     eigen_assert(m_ == k_ && k_ == n_); | |
|     const StormEigen::array<TensorIndex, 2> sizes(m_, m_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, sizes); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, sizes); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizes); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A.exp() + B.log(); | |
|     } | |
|     // Record the number of FLOP executed per second (assuming one operation | |
|     // per value) | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   // Simple reduction | |
|   void reduction(int num_iters) { | |
|     const StormEigen::array<TensorIndex, 2> input_size(k_, n_); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, input_size); | |
|     const StormEigen::array<TensorIndex, 1> output_size(n_); | |
|     TensorMap<Tensor<float, 1>, StormEigen::Aligned> C(c_, output_size); | |
| 
 | |
|     const StormEigen::array<TensorIndex, 1> sum_along_dim(0); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = B.sum(sum_along_dim); | |
|     } | |
|     // Record the number of FLOP executed per second (assuming one operation | |
|     // per value) | |
|     finalizeBenchmark(m_ * m_ * num_iters); | |
|   } | |
| 
 | |
|   // do a contraction which is equivalent to a matrix multiplication | |
|   void contraction(int num_iters) { | |
|     const StormEigen::array<TensorIndex, 2> sizeA(m_, k_); | |
|     const StormEigen::array<TensorIndex, 2> sizeB(k_, n_); | |
|     const StormEigen::array<TensorIndex, 2> sizeC(m_, n_); | |
| 
 | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, sizeA); | |
|     const TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, sizeB); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, sizeC); | |
| 
 | |
|     typedef typename Tensor<float, 2>::DimensionPair DimPair; | |
|     const StormEigen::array<DimPair, 1> dims(DimPair(1, 0)); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A.contract(B, dims); | |
|     } | |
|     // Record the number of FLOP executed per second (size_ multiplications and | |
|     // additions for each value in the resulting tensor) | |
|     finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters); | |
|   } | |
| 
 | |
|   void convolution(int num_iters, int kernel_x, int kernel_y) { | |
|     const StormEigen::array<TensorIndex, 2> input_sizes(m_, n_); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> A(a_, input_sizes); | |
|     const StormEigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> B(b_, kernel_sizes); | |
|     const StormEigen::array<TensorIndex, 2> result_sizes( | |
|         m_ - kernel_x + 1, n_ - kernel_y + 1); | |
|     TensorMap<Tensor<float, 2>, StormEigen::Aligned> C(c_, result_sizes); | |
|     StormEigen::array<Tensor<float, 2>::Index, 2> dims(0, 1); | |
| 
 | |
|     StartBenchmarkTiming(); | |
|     for (int iter = 0; iter < num_iters; ++iter) { | |
|       C.device(device_) = A.convolve(B, dims); | |
|     } | |
|     // Record the number of FLOP executed per second (kernel_size | |
|     // multiplications and additions for each value in the resulting tensor) | |
|     finalizeBenchmark( | |
|         (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters); | |
|   } | |
| 
 | |
|  private: | |
|   void initialize() { | |
|     a_ = (float *) device_.allocate(m_ * k_ * sizeof(float)); | |
|     b_ = (float *) device_.allocate(k_ * n_ * sizeof(float)); | |
|     c_ = (float *) device_.allocate(m_ * n_ * sizeof(float)); | |
| 
 | |
|     // Initialize the content of the memory pools to prevent asan from | |
|     // complaining. | |
|     device_.memset(a_, 12, m_ * k_ * sizeof(float)); | |
|     device_.memset(b_, 23, k_ * n_ * sizeof(float)); | |
|     device_.memset(c_, 31, m_ * n_ * sizeof(float)); | |
| 
 | |
|     BenchmarkUseRealTime(); | |
|   } | |
| 
 | |
|   inline void finalizeBenchmark(int64 num_items) { | |
| #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) | |
|     if (StormEigen::internal::is_same<Device, StormEigen::GpuDevice>::value) { | |
|       device_.synchronize(); | |
|     } | |
| #endif | |
|     StopBenchmarkTiming(); | |
|     SetBenchmarkItemsProcessed(num_items); | |
|   } | |
| 
 | |
| 
 | |
|   size_t m_; | |
|   size_t k_; | |
|   size_t n_; | |
|   float* a_; | |
|   float* b_; | |
|   float* c_; | |
|   Device device_; | |
| }; | |
| #endif  // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
 |