You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
9.7 KiB
206 lines
9.7 KiB
#include "src/solver/GmmxxMinMaxLinearEquationSolver.h"
|
|
|
|
#include <utility>
|
|
|
|
#include "src/settings/SettingsManager.h"
|
|
#include "src/adapters/GmmxxAdapter.h"
|
|
#include "src/solver/GmmxxLinearEquationSolver.h"
|
|
#include "src/storage/TotalScheduler.h"
|
|
#include "src/utility/vector.h"
|
|
|
|
#include "src/settings/modules/GeneralSettings.h"
|
|
#include "src/settings/modules/GmmxxEquationSolverSettings.h"
|
|
|
|
namespace storm {
|
|
namespace solver {
|
|
|
|
template<typename ValueType>
|
|
GmmxxMinMaxLinearEquationSolver<ValueType>::GmmxxMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, MinMaxTechniqueSelection preferredTechnique, bool trackScheduler) :
|
|
MinMaxLinearEquationSolver<ValueType>(A, storm::settings::gmmxxEquationSolverSettings().getPrecision(), storm::settings::gmmxxEquationSolverSettings().getConvergenceCriterion() == storm::settings::modules::GmmxxEquationSolverSettings::ConvergenceCriterion::Relative, storm::settings::gmmxxEquationSolverSettings().getMaximalIterationCount(), trackScheduler, preferredTechnique), gmmxxMatrix(storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<ValueType>(A)), rowGroupIndices(A.getRowGroupIndices()) {
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
template<typename ValueType>
|
|
GmmxxMinMaxLinearEquationSolver<ValueType>::GmmxxMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, double precision, uint_fast64_t maximalNumberOfIterations, MinMaxTechniqueSelection tech, bool relative, bool trackScheduler) : MinMaxLinearEquationSolver<ValueType>(A, precision, relative, maximalNumberOfIterations, trackScheduler, tech), gmmxxMatrix(storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<ValueType>(A)), rowGroupIndices(A.getRowGroupIndices()) {
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void GmmxxMinMaxLinearEquationSolver<ValueType>::solveEquationSystem(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
|
|
if (this->useValueIteration) {
|
|
STORM_LOG_THROW(!this->isTrackSchedulerSet(), storm::exceptions::InvalidSettingsException, "Unable to produce a scheduler when using value iteration. Use policy iteration instead.");
|
|
|
|
// Set up the environment for the power method. If scratch memory was not provided, we need to create it.
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(b.size());
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
|
|
std::vector<ValueType>* currentX = &x;
|
|
bool xMemoryProvided = true;
|
|
if (newX == nullptr) {
|
|
newX = new std::vector<ValueType>(x.size());
|
|
xMemoryProvided = false;
|
|
}
|
|
uint_fast64_t iterations = 0;
|
|
bool converged = false;
|
|
|
|
// Keep track of which of the vectors for x is the auxiliary copy.
|
|
std::vector<ValueType>* copyX = newX;
|
|
|
|
// Proceed with the iterations as long as the method did not converge or reach the user-specified maximum number
|
|
// of iterations.
|
|
while (!converged && iterations < this->maximalNumberOfIterations && !(this->hasCustomTerminationCondition() && this->getTerminationCondition().terminateNow(*currentX))) {
|
|
// Compute x' = A*x + b.
|
|
gmm::mult(*gmmxxMatrix, *currentX, *multiplyResult);
|
|
gmm::add(b, *multiplyResult);
|
|
|
|
// Reduce the vector x by applying min/max over all nondeterministic choices.
|
|
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, *newX, rowGroupIndices);
|
|
|
|
// Determine whether the method converged.
|
|
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, this->precision, this->relative);
|
|
|
|
// Update environment variables.
|
|
std::swap(currentX, newX);
|
|
++iterations;
|
|
}
|
|
|
|
// Check if the solver converged and issue a warning otherwise.
|
|
if (converged) {
|
|
STORM_LOG_INFO("Iterative solver converged after " << iterations << " iterations.");
|
|
} else {
|
|
STORM_LOG_WARN("Iterative solver did not converge after " << iterations << " iterations.");
|
|
}
|
|
|
|
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
|
|
// is currently stored in currentX, but x is the output vector.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
if (!xMemoryProvided) {
|
|
delete copyX;
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
} else {
|
|
// We will use Policy Iteration to solve the given system.
|
|
// We first guess an initial choice resolution which will be refined after each iteration.
|
|
std::vector<storm::storage::sparse::state_type> scheduler(this->A.getRowGroupIndices().size() - 1);
|
|
|
|
// Create our own multiplyResult for solving the deterministic sub-instances.
|
|
std::vector<ValueType> deterministicMultiplyResult(rowGroupIndices.size() - 1);
|
|
std::vector<ValueType> subB(rowGroupIndices.size() - 1);
|
|
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(b.size());
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
|
|
std::vector<ValueType>* currentX = &x;
|
|
bool xMemoryProvided = true;
|
|
if (newX == nullptr) {
|
|
newX = new std::vector<ValueType>(x.size());
|
|
xMemoryProvided = false;
|
|
}
|
|
|
|
uint_fast64_t iterations = 0;
|
|
bool converged = false;
|
|
|
|
// Keep track of which of the vectors for x is the auxiliary copy.
|
|
std::vector<ValueType>* copyX = newX;
|
|
|
|
// Proceed with the iterations as long as the method did not converge or reach the user-specified maximum number
|
|
// of iterations.
|
|
while (!converged && iterations < this->maximalNumberOfIterations && !(this->hasCustomTerminationCondition() && this->getTerminationCondition().terminateNow(*currentX))) {
|
|
// Take the sub-matrix according to the current choices
|
|
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(scheduler, true);
|
|
submatrix.convertToEquationSystem();
|
|
|
|
GmmxxLinearEquationSolver<ValueType> gmmLinearEquationSolver(submatrix, storm::solver::GmmxxLinearEquationSolver<double>::SolutionMethod::Gmres, this->precision, this->maximalNumberOfIterations, storm::solver::GmmxxLinearEquationSolver<double>::Preconditioner::Ilu, this->relative, 50);
|
|
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, rowGroupIndices, b);
|
|
|
|
// Copy X since we will overwrite it
|
|
std::copy(currentX->begin(), currentX->end(), newX->begin());
|
|
|
|
// Solve the resulting linear equation system
|
|
gmmLinearEquationSolver.solveEquationSystem(*newX, subB, &deterministicMultiplyResult);
|
|
|
|
// Compute x' = A*x + b. This step is necessary to allow the choosing of the optimal policy for the next iteration.
|
|
gmm::mult(*gmmxxMatrix, *newX, *multiplyResult);
|
|
gmm::add(b, *multiplyResult);
|
|
|
|
// Reduce the vector x by applying min/max over all nondeterministic choices.
|
|
// Here, we capture which choice was taken in each state, thereby refining our initial guess.
|
|
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, *newX, rowGroupIndices, &(scheduler));
|
|
|
|
// Determine whether the method converged.
|
|
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, static_cast<ValueType>(this->precision), this->relative);
|
|
|
|
// Update environment variables.
|
|
std::swap(currentX, newX);
|
|
++iterations;
|
|
}
|
|
|
|
// Check if the solver converged and issue a warning otherwise.
|
|
if (converged) {
|
|
STORM_LOG_INFO("Iterative solver converged after " << iterations << " iterations.");
|
|
} else {
|
|
STORM_LOG_WARN("Iterative solver did not converge after " << iterations << " iterations.");
|
|
}
|
|
|
|
// If requested, we store the scheduler for retrieval.
|
|
if (this->isTrackSchedulerSet()) {
|
|
this->scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(scheduler));
|
|
}
|
|
|
|
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
|
|
// is currently stored in currentX, but x is the output vector.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
if (!xMemoryProvided) {
|
|
delete copyX;
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void GmmxxMinMaxLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType>* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
|
|
bool multiplyResultMemoryProvided = true;
|
|
if (multiplyResult == nullptr) {
|
|
multiplyResult = new std::vector<ValueType>(gmmxxMatrix->nr);
|
|
multiplyResultMemoryProvided = false;
|
|
}
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
|
|
for (uint_fast64_t i = 0; i < n; ++i) {
|
|
gmm::mult(*gmmxxMatrix, x, *multiplyResult);
|
|
|
|
if (b != nullptr) {
|
|
gmm::add(*b, *multiplyResult);
|
|
}
|
|
|
|
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, x, rowGroupIndices);
|
|
|
|
}
|
|
|
|
if (!multiplyResultMemoryProvided) {
|
|
delete multiplyResult;
|
|
}
|
|
}
|
|
|
|
// Explicitly instantiate the solver.
|
|
template class GmmxxMinMaxLinearEquationSolver<double>;
|
|
} // namespace solver
|
|
} // namespace storm
|