You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

125 lines
7.2 KiB

#include "src/solver/GameSolver.h"
#include "src/solver/LinearEquationSolver.h"
#include "src/utility/solver.h"
#include "src/storage/SparseMatrix.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
namespace storm {
namespace solver {
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix) : AbstractGameSolver(), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
// Intentionally left empty.
}
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : AbstractGameSolver(precision, maximalNumberOfIterations, relative), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
// Intentionally left empty.
}
template <typename ValueType>
void GameSolver<ValueType>::solveGame(OptimizationDirection player1Goal, OptimizationDirection player2Goal, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Set up the environment for value iteration.
bool converged = false;
uint_fast64_t numberOfPlayer1States = x.size();
std::vector<ValueType> tmpResult(numberOfPlayer1States);
std::vector<ValueType> nondetResult(player2Matrix.getRowCount());
std::vector<ValueType> player2Result(player2Matrix.getRowGroupCount());
// Now perform the actual value iteration.
uint_fast64_t iterations = 0;
do {
player2Matrix.multiplyWithVector(x, nondetResult);
storm::utility::vector::addVectors(b, nondetResult, nondetResult);
if (player2Goal == OptimizationDirection::Minimize) {
storm::utility::vector::reduceVectorMin(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
} else {
storm::utility::vector::reduceVectorMax(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
}
for (uint_fast64_t pl1State = 0; pl1State < numberOfPlayer1States; ++pl1State) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRowGroup(pl1State);
if (relevantRows.getNumberOfEntries() > 0) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator it = relevantRows.begin();
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator ite = relevantRows.end();
// Set the first value.
tmpResult[pl1State] = player2Result[it->getColumn()];
++it;
// Now iterate through the different values and pick the extremal one.
if (player1Goal == OptimizationDirection::Minimize) {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::min(tmpResult[pl1State], player2Result[it->getColumn()]);
}
} else {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::max(tmpResult[pl1State], player2Result[it->getColumn()]);
}
}
} else {
tmpResult[pl1State] = storm::utility::zero<ValueType>();
}
}
// Check if the process converged and set up the new iteration in case we are not done.
converged = storm::utility::vector::equalModuloPrecision(x, tmpResult, precision, relative);
std::swap(x, tmpResult);
++iterations;
} while (!converged && iterations < maximalNumberOfIterations);
STORM_LOG_WARN_COND(converged, "Iterative solver for stochastic two player games did not converge after " << iterations << " iterations.");
if(this->trackPolicies){
this->player2Policy = std::vector<storm::storage::sparse::state_type>(player2Matrix.getRowGroupCount());
storm::utility::vector::reduceVectorMinOrMax(player2Goal, nondetResult, player2Result, player2Matrix.getRowGroupIndices(), &this->player2Policy);
this->player1Policy = std::vector<storm::storage::sparse::state_type>(numberOfPlayer1States, 0);
for (uint_fast64_t pl1State = 0; pl1State < numberOfPlayer1States; ++pl1State) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRowGroup(pl1State);
if (relevantRows.getNumberOfEntries() > 0) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator it = relevantRows.begin();
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator ite = relevantRows.end();
// Set the first value.
tmpResult[pl1State] = player2Result[it->getColumn()];
++it;
storm::storage::sparse::state_type localChoice = 1;
// Now iterate through the different values and pick the extremal one.
if (player1Goal == OptimizationDirection::Minimize) {
for (; it != ite; ++it, ++localChoice) {
if(player2Result[it->getColumn()] < tmpResult[pl1State]){
tmpResult[pl1State] = player2Result[it->getColumn()];
this->player1Policy[pl1State] = localChoice;
}
}
} else {
for (; it != ite; ++it, ++localChoice) {
if(player2Result[it->getColumn()] > tmpResult[pl1State]){
tmpResult[pl1State] = player2Result[it->getColumn()];
this->player1Policy[pl1State] = localChoice;
}
}
}
} else {
STORM_LOG_ERROR("There is no choice for Player 1 at state " << pl1State << " in the stochastic two player game. This is not expected!");
}
}
}
}
template <typename ValueType>
storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& GameSolver<ValueType>::getPlayer1Matrix() const {
return player1Matrix;
}
template <typename ValueType>
storm::storage::SparseMatrix<ValueType> const& GameSolver<ValueType>::getPlayer2Matrix() const {
return player2Matrix;
}
template class GameSolver<double>;
}
}