You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

246 lines
14 KiB

#ifndef STORM_MODELS_ABSTRACTNONDETERMINISTICMODEL_H_
#define STORM_MODELS_ABSTRACTNONDETERMINISTICMODEL_H_
#include "AbstractModel.h"
#include <memory>
namespace storm {
namespace models {
/*!
* @brief Base class for all non-deterministic model classes.
*
* This is base class defines a common interface for all non-deterministic models.
*/
template<class T>
class AbstractNondeterministicModel: public AbstractModel<T> {
public:
/*! Constructs an abstract non-determinstic model from the given parameters.
* All values are copied.
* @param transitionMatrix The matrix representing the transitions in the model.
* @param stateLabeling The labeling that assigns a set of atomic
* propositions to each state.
* @param choiceIndices A mapping from states to rows in the transition matrix.
* @param stateRewardVector The reward values associated with the states.
* @param transitionRewardMatrix The reward values associated with the transitions of the model.
* @param optionalChoiceLabeling A vector that represents the labels associated with the choices of each state.
*/
AbstractNondeterministicModel(storm::storage::SparseMatrix<T> const& transitionMatrix,
storm::models::AtomicPropositionsLabeling const& stateLabeling,
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices,
boost::optional<std::vector<T>> const& optionalStateRewardVector,
boost::optional<storm::storage::SparseMatrix<T>> const& optionalTransitionRewardMatrix,
boost::optional<std::vector<std::set<uint_fast64_t>>> const& optionalChoiceLabeling)
: AbstractModel<T>(transitionMatrix, stateLabeling, optionalStateRewardVector, optionalTransitionRewardMatrix, optionalChoiceLabeling) {
this->nondeterministicChoiceIndices = nondeterministicChoiceIndices;
}
/*! Constructs an abstract non-determinstic model from the given parameters.
* All values are moved.
* @param transitionMatrix The matrix representing the transitions in the model.
* @param stateLabeling The labeling that assigns a set of atomic
* propositions to each state.
* @param choiceIndices A mapping from states to rows in the transition matrix.
* @param stateRewardVector The reward values associated with the states.
* @param transitionRewardMatrix The reward values associated with the transitions of the model.
*/
AbstractNondeterministicModel(storm::storage::SparseMatrix<T>&& transitionMatrix,
storm::models::AtomicPropositionsLabeling&& stateLabeling,
std::vector<uint_fast64_t>&& nondeterministicChoiceIndices,
boost::optional<std::vector<T>>&& optionalStateRewardVector,
boost::optional<storm::storage::SparseMatrix<T>>&& optionalTransitionRewardMatrix,
boost::optional<std::vector<std::set<uint_fast64_t>>>&& optionalChoiceLabeling)
// The std::move call must be repeated here because otherwise this calls the copy constructor of the Base Class
: AbstractModel<T>(std::move(transitionMatrix), std::move(stateLabeling), std::move(optionalStateRewardVector), std::move(optionalTransitionRewardMatrix),
std::move(optionalChoiceLabeling)), nondeterministicChoiceIndices(std::move(nondeterministicChoiceIndices)) {
// Intentionally left empty.
}
/*!
* Destructor.
*/
virtual ~AbstractNondeterministicModel() {
// Intentionally left empty.
}
/*!
* Copy Constructor.
*/
AbstractNondeterministicModel(AbstractNondeterministicModel const& other) : AbstractModel<T>(other),
nondeterministicChoiceIndices(other.nondeterministicChoiceIndices) {
// Intentionally left empty.
}
/*!
* Move Constructor.
*/
AbstractNondeterministicModel(AbstractNondeterministicModel&& other) : AbstractModel<T>(std::move(other)),
nondeterministicChoiceIndices(std::move(other.nondeterministicChoiceIndices)) {
// Intentionally left empty.
}
/*!
* Returns the number of choices for all states of the MDP.
* @return The number of choices for all states of the MDP.
*/
uint_fast64_t getNumberOfChoices() const {
return this->transitionMatrix.getRowCount();
}
/*!
* Retrieves the size of the internal representation of the model in memory.
*
* @return the size of the internal representation of the model in memory
* measured in bytes.
*/
virtual uint_fast64_t getSizeInMemory() const {
return AbstractModel<T>::getSizeInMemory() + nondeterministicChoiceIndices.size() * sizeof(uint_fast64_t);
}
/*!
* Retrieves the vector indicating which matrix rows represent non-deterministic choices
* of a certain state.
* @param the vector indicating which matrix rows represent non-deterministic choices
* of a certain state.
*/
std::vector<uint_fast64_t> const& getNondeterministicChoiceIndices() const {
return nondeterministicChoiceIndices;
}
virtual typename storm::storage::SparseMatrix<T>::Rows getRows(uint_fast64_t state) const override {
return this->transitionMatrix.getRows(nondeterministicChoiceIndices[state], nondeterministicChoiceIndices[state + 1] - 1);
}
virtual typename storm::storage::SparseMatrix<T>::ConstRowIterator rowIteratorBegin(uint_fast64_t state) const override {
return this->transitionMatrix.begin(nondeterministicChoiceIndices[state]);
}
virtual typename storm::storage::SparseMatrix<T>::ConstRowIterator rowIteratorEnd(uint_fast64_t state) const override {
return this->transitionMatrix.end(nondeterministicChoiceIndices[state + 1] - 1);
}
/*!
* Calculates a hash over all values contained in this Model.
* @return size_t A Hash Value
*/
virtual size_t getHash() const override {
std::size_t result = 0;
std::size_t hashTmp = storm::utility::Hash<uint_fast64_t>::getHash(nondeterministicChoiceIndices);
boost::hash_combine(result, AbstractModel<T>::getHash());
boost::hash_combine(result, hashTmp);
return result;
}
/*!
* Prints information about the model to the specified stream.
* @param out The stream the information is to be printed to.
*/
virtual void printModelInformationToStream(std::ostream& out) const override {
out << "-------------------------------------------------------------- " << std::endl;
out << "Model type: \t\t" << this->getType() << std::endl;
out << "States: \t\t" << this->getNumberOfStates() << std::endl;
out << "Transitions: \t\t" << this->getNumberOfTransitions() << std::endl;
out << "Choices: \t\t" << this->getNumberOfChoices() << std::endl;
this->getStateLabeling().printAtomicPropositionsInformationToStream(out);
out << "Size in memory: \t" << (this->getSizeInMemory())/1024 << " kbytes" << std::endl;
out << "-------------------------------------------------------------- " << std::endl;
}
virtual void writeDotToStream(std::ostream& outStream, bool includeLabeling = true, storm::storage::BitVector const* subsystem = nullptr, std::vector<T> const* firstValue = nullptr, std::vector<T> const* secondValue = nullptr, std::vector<uint_fast64_t> const* stateColoring = nullptr, std::vector<std::string> const* colors = nullptr, std::vector<uint_fast64_t>* scheduler = nullptr, bool finalizeOutput = true) const override {
AbstractModel<T>::writeDotToStream(outStream, includeLabeling, subsystem, firstValue, secondValue, stateColoring, colors, scheduler, false);
// Write the probability distributions for all the states.
auto rowIt = this->transitionMatrix.begin();
for (uint_fast64_t state = 0, highestStateIndex = this->getNumberOfStates() - 1; state <= highestStateIndex; ++state) {
uint_fast64_t rowCount = nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state];
bool highlightChoice = true;
// For this, we need to iterate over all available nondeterministic choices in the current state.
for (uint_fast64_t row = 0; row < rowCount; ++row, ++rowIt) {
if (scheduler != nullptr) {
// If the scheduler picked the current choice, we will not make it dotted, but highlight it.
if ((*scheduler)[state] == row) {
highlightChoice = true;
} else {
highlightChoice = false;
}
}
// For each nondeterministic choice, we draw an arrow to an intermediate node to better display
// the grouping of transitions.
outStream << "\t\"" << state << "c" << row << "\" [shape = \"point\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << ", fillcolor=\"red\"";
}
}
outStream << "];" << std::endl;
outStream << "\t" << state << " -> \"" << state << "c" << row << "\"";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << " [color=\"red\", penwidth = 2]";
} else {
outStream << " [style = \"dotted\"]";
}
}
outStream << ";" << std::endl;
// Now draw all probabilitic arcs that belong to this nondeterminstic choice.
for (auto transitionIt = rowIt.begin(), transitionIte = rowIt.end(); transitionIt != transitionIte; ++transitionIt) {
if (subsystem == nullptr || subsystem->get(transitionIt.column())) {
outStream << "\t\"" << state << "c" << row << "\" -> " << transitionIt.column() << " [ label= \"" << transitionIt.value() << "\" ]";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
if (highlightChoice) {
outStream << " [color=\"red\", penwidth = 2]";
} else {
outStream << " [style = \"dotted\"]";
}
}
outStream << ";" << std::endl;
}
}
}
}
if (finalizeOutput) {
outStream << "}" << std::endl;
}
}
/*!
* Assigns this model a new set of choiceLabels, giving each choice a label with the stateId
* @return void
*/
virtual void setStateIdBasedChoiceLabeling() override {
std::vector<std::set<uint_fast64_t>> newChoiceLabeling;
size_t stateCount = this->getNumberOfStates();
size_t choiceCount = this->getNumberOfChoices();
newChoiceLabeling.resize(choiceCount);
for (size_t state = 0; state < stateCount; ++state) {
for (size_t choice = this->nondeterministicChoiceIndices.at(state); choice < this->nondeterministicChoiceIndices.at(state + 1); ++choice) {
newChoiceLabeling.at(choice).insert(state);
}
}
this->choiceLabeling.reset(newChoiceLabeling);
}
private:
/*! A vector of indices mapping states to the choices (rows) in the transition matrix. */
std::vector<uint_fast64_t> nondeterministicChoiceIndices;
};
} // namespace models
} // namespace storm
#endif /* STORM_MODELS_ABSTRACTDETERMINISTICMODEL_H_ */