You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

965 lines
68 KiB

#include "src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h"
#include <algorithm>
#ifdef PARAMETRIC_SYSTEMS
#include "src/storage/parameters.h"
#endif
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/modelchecker/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/ExplicitQuantitativeCheckResult.h"
#include "src/utility/graph.h"
#include "src/utility/vector.h"
#include "src/utility/macros.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidStateException.h"
namespace storm {
namespace modelchecker {
template<typename ValueType>
SparseDtmcEliminationModelChecker<ValueType>::SparseDtmcEliminationModelChecker(storm::models::Dtmc<ValueType> const& model) : model(model) {
// Intentionally left empty.
}
template<typename ValueType>
bool SparseDtmcEliminationModelChecker<ValueType>::canHandle(storm::logic::Formula const& formula) const {
if (formula.isProbabilityOperatorFormula()) {
storm::logic::ProbabilityOperatorFormula const& probabilityOperatorFormula = formula.asProbabilityOperatorFormula();
return this->canHandle(probabilityOperatorFormula.getSubformula());
} else if (formula.isRewardOperatorFormula()) {
storm::logic::RewardOperatorFormula const& rewardOperatorFormula = formula.asRewardOperatorFormula();
return this->canHandle(rewardOperatorFormula.getSubformula());
} else if (formula.isUntilFormula() || formula.isEventuallyFormula()) {
if (formula.isUntilFormula()) {
storm::logic::UntilFormula const& untilFormula = formula.asUntilFormula();
if (untilFormula.getLeftSubformula().isPropositionalFormula() && untilFormula.getRightSubformula().isPropositionalFormula()) {
return true;
}
} else if (formula.isEventuallyFormula()) {
storm::logic::EventuallyFormula const& eventuallyFormula = formula.asEventuallyFormula();
if (eventuallyFormula.getSubformula().isPropositionalFormula()) {
return true;
}
}
} else if (formula.isReachabilityRewardFormula()) {
storm::logic::ReachabilityRewardFormula reachabilityRewardFormula = formula.asReachabilityRewardFormula();
if (reachabilityRewardFormula.getSubformula().isPropositionalFormula()) {
return true;
}
} else if (formula.isConditionalPathFormula()) {
storm::logic::ConditionalPathFormula conditionalPathFormula = formula.asConditionalPathFormula();
if (conditionalPathFormula.getLeftSubformula().isEventuallyFormula() && conditionalPathFormula.getRightSubformula().isEventuallyFormula()) {
return this->canHandle(conditionalPathFormula.getLeftSubformula()) && this->canHandle(conditionalPathFormula.getRightSubformula());
}
} else if (formula.isPropositionalFormula()) {
return true;
} else {
std::cout << formula << " and type " << typeid(formula).name() << std::endl;
}
return false;
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
// Retrieve the appropriate bitvectors by model checking the subformulas.
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
storm::storage::BitVector const& phiStates = leftResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector const& psiStates = rightResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Do some sanity checks to establish some required properties.
STORM_LOG_THROW(model.getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
storm::storage::sparse::state_type initialState = *model.getInitialStates().begin();
// Then, compute the subset of states that has a probability of 0 or 1, respectively.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(model, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = statesWithProbability01.first;
storm::storage::BitVector statesWithProbability1 = statesWithProbability01.second;
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
// If the initial state is known to have either probability 0 or 1, we can directly return the result.
if (model.getInitialStates().isDisjointFrom(maybeStates)) {
STORM_LOG_DEBUG("The probability of all initial states was found in a preprocessing step.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, statesWithProbability0.get(*model.getInitialStates().begin()) ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>()));
}
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(model.getTransitionMatrix(), model.getInitialStates(), maybeStates, statesWithProbability1);
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
// Create a vector for the probabilities to go to a state with probability 1 in one step.
std::vector<ValueType> oneStepProbabilities = model.getTransitionMatrix().getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Determine the set of initial states of the sub-model.
storm::storage::BitVector newInitialStates = model.getInitialStates() % maybeStates;
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
// Before starting the model checking process, we assign priorities to states so we can use them to
// impose ordering constraints later.
std::vector<std::size_t> statePriorities = getStatePriorities(submatrix, submatrixTransposed, newInitialStates, oneStepProbabilities);
boost::optional<std::vector<ValueType>> missingStateRewards;
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, computeReachabilityValue(submatrix, oneStepProbabilities, submatrixTransposed, newInitialStates, phiStates, psiStates, missingStateRewards, statePriorities)));
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
// Retrieve the appropriate bitvectors by model checking the subformulas.
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
storm::storage::BitVector phiStates(model.getNumberOfStates(), true);
storm::storage::BitVector const& psiStates = subResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Do some sanity checks to establish some required properties.
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::IllegalArgumentException, "Input model does not have a reward model.");
STORM_LOG_THROW(model.getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
storm::storage::sparse::state_type initialState = *model.getInitialStates().begin();
// Then, compute the subset of states that has a reachability reward less than infinity.
storm::storage::BitVector trueStates(model.getNumberOfStates(), true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(model.getBackwardTransitions(), trueStates, psiStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~psiStates & ~infinityStates;
// If the initial state is known to have 0 reward or an infinite reward value, we can directly return the result.
STORM_LOG_THROW(model.getInitialStates().isDisjointFrom(infinityStates), storm::exceptions::IllegalArgumentException, "Initial state has infinite reward.");
if (!model.getInitialStates().isDisjointFrom(psiStates)) {
STORM_LOG_DEBUG("The reward of all initial states was found in a preprocessing step.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, storm::utility::zero<ValueType>()));
}
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(model.getTransitionMatrix(), model.getInitialStates(), maybeStates, psiStates);
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
// Create a vector for the probabilities to go to a state with probability 1 in one step.
std::vector<ValueType> oneStepProbabilities = model.getTransitionMatrix().getConstrainedRowSumVector(maybeStates, psiStates);
// Determine the set of initial states of the sub-model.
storm::storage::BitVector newInitialStates = model.getInitialStates() % maybeStates;
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
// Before starting the model checking process, we assign priorities to states so we can use them to
// impose ordering constraints later.
std::vector<std::size_t> statePriorities = getStatePriorities(submatrix, submatrixTransposed, newInitialStates, oneStepProbabilities);
// Project the state reward vector to all maybe-states.
boost::optional<std::vector<ValueType>> optionalStateRewards(maybeStates.getNumberOfSetBits());
std::vector<ValueType>& stateRewards = optionalStateRewards.get();
if (model.hasTransitionRewards()) {
// If a transition-based reward model is available, we initialize the right-hand
// side to the vector resulting from summing the rows of the pointwise product
// of the transition probability matrix and the transition reward matrix.
std::vector<ValueType> pointwiseProductRowSumVector = model.getTransitionMatrix().getPointwiseProductRowSumVector(model.getTransitionRewardMatrix());
storm::utility::vector::selectVectorValues(stateRewards, maybeStates, pointwiseProductRowSumVector);
if (model.hasStateRewards()) {
// If a state-based reward model is also available, we need to add this vector
// as well. As the state reward vector contains entries not just for the states
// that we still consider (i.e. maybeStates), we need to extract these values
// first.
std::vector<ValueType> subStateRewards(stateRewards.size());
storm::utility::vector::selectVectorValues(subStateRewards, maybeStates, model.getStateRewardVector());
storm::utility::vector::addVectorsInPlace(stateRewards, subStateRewards);
}
} else {
// If only a state-based reward model is available, we take this vector as the
// right-hand side. As the state reward vector contains entries not just for the
// states that we still consider (i.e. maybeStates), we need to extract these values
// first.
storm::utility::vector::selectVectorValues(stateRewards, maybeStates, model.getStateRewardVector());
}
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, computeReachabilityValue(submatrix, oneStepProbabilities, submatrixTransposed, newInitialStates, phiStates, psiStates, optionalStateRewards, statePriorities)));
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<ValueType>::computeConditionalProbabilities(storm::logic::ConditionalPathFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::chrono::high_resolution_clock::time_point totalTimeStart = std::chrono::high_resolution_clock::now();
// Retrieve the appropriate bitvectors by model checking the subformulas.
STORM_LOG_THROW(pathFormula.getLeftSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Expected 'eventually' formula.");
STORM_LOG_THROW(pathFormula.getRightSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Expected 'eventually' formula.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula().asEventuallyFormula().getSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula().asEventuallyFormula().getSubformula());
storm::storage::BitVector phiStates = leftResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector psiStates = rightResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector trueStates(model.getNumberOfStates(), true);
// Do some sanity checks to establish some required properties.
STORM_LOG_THROW(storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationMethod() != storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::State, storm::exceptions::InvalidArgumentException, "Unsupported elimination method for conditional probabilities.");
STORM_LOG_THROW(model.getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
storm::storage::sparse::state_type initialState = *model.getInitialStates().begin();
storm::storage::SparseMatrix<ValueType> backwardTransitions = model.getBackwardTransitions();
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, trueStates, psiStates);
storm::storage::BitVector statesWithProbabilityGreater0 = ~statesWithProbability01.first;
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
STORM_LOG_THROW(model.getInitialStates().isSubsetOf(statesWithProbabilityGreater0), storm::exceptions::InvalidPropertyException, "The condition of the conditional probability has zero probability.");
// If the initial state is known to have probability 1 of satisfying the condition, we can apply regular model checking.
if (model.getInitialStates().isSubsetOf(statesWithProbability1)) {
STORM_LOG_INFO("The condition holds with probability 1, so the regular reachability probability is computed.");
std::shared_ptr<storm::logic::BooleanLiteralFormula> trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true);
std::shared_ptr<storm::logic::UntilFormula> untilFormula = std::make_shared<storm::logic::UntilFormula>(trueFormula, pathFormula.getLeftSubformula().asSharedPointer());
return this->computeUntilProbabilities(*untilFormula);
}
// From now on, we know the condition does not have a trivial probability in the initial state.
// Compute the 'true' psi states, i.e. those psi states that can be reached without passing through another psi state first.
psiStates = storm::utility::graph::getReachableStates(model.getTransitionMatrix(), model.getInitialStates(), trueStates, psiStates) & psiStates;
// Compute the states that can be reached on a path that has a psi state in it.
storm::storage::BitVector statesWithPsiPredecessor = storm::utility::graph::performProbGreater0(model.getTransitionMatrix(), trueStates, psiStates);
storm::storage::BitVector statesReachingPhi = storm::utility::graph::performProbGreater0(backwardTransitions, trueStates, phiStates);
// The set of states we need to consider are those that have a non-zero probability to satisfy the condition or are on some path that has a psi state in it.
STORM_LOG_DEBUG("Initial state: " << model.getInitialStates());
STORM_LOG_DEBUG("Phi states: " << phiStates);
STORM_LOG_DEBUG("Psi state: " << psiStates);
STORM_LOG_DEBUG("States with probability greater 0 of satisfying the condition: " << statesWithProbabilityGreater0);
STORM_LOG_DEBUG("States with psi predecessor: " << statesWithPsiPredecessor);
STORM_LOG_DEBUG("States reaching phi: " << statesReachingPhi);
storm::storage::BitVector maybeStates = statesWithProbabilityGreater0 | (statesWithPsiPredecessor & statesReachingPhi);
STORM_LOG_DEBUG("Found " << maybeStates.getNumberOfSetBits() << " relevant states: " << maybeStates);
// Determine the set of initial states of the sub-DTMC.
storm::storage::BitVector newInitialStates = model.getInitialStates() % maybeStates;
// Create a dummy vector for the one-step probabilities.
std::vector<ValueType> oneStepProbabilities(maybeStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
// The states we want to eliminate are those that are tagged with "maybe" but are not a phi or psi state.
phiStates = phiStates % maybeStates;
psiStates = psiStates % maybeStates;
// Keep only the states that we do not eliminate in the maybe states.
maybeStates = phiStates | psiStates;
STORM_LOG_DEBUG("Phi states in reduced model " << phiStates);
STORM_LOG_DEBUG("Psi states in reduced model " << psiStates);
storm::storage::BitVector statesToEliminate = ~maybeStates & ~newInitialStates;
STORM_LOG_DEBUG("Eliminating the states " << statesToEliminate);
// Before starting the model checking process, we assign priorities to states so we can use them to
// impose ordering constraints later.
std::vector<std::size_t> statePriorities = getStatePriorities(submatrix, submatrixTransposed, newInitialStates, oneStepProbabilities);
std::vector<storm::storage::sparse::state_type> states(statesToEliminate.begin(), statesToEliminate.end());
// Sort the states according to the priorities.
std::sort(states.begin(), states.end(), [&statePriorities] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return statePriorities[a] < statePriorities[b]; });
STORM_LOG_INFO("Computing conditional probilities." << std::endl);
STORM_LOG_INFO("Eliminating " << states.size() << " states using the state elimination technique." << std::endl);
boost::optional<std::vector<ValueType>> missingStateRewards;
std::chrono::high_resolution_clock::time_point conversionStart = std::chrono::high_resolution_clock::now();
FlexibleSparseMatrix flexibleMatrix = getFlexibleSparseMatrix(submatrix);
FlexibleSparseMatrix flexibleBackwardTransitions = getFlexibleSparseMatrix(submatrixTransposed, true);
std::chrono::high_resolution_clock::time_point conversionEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point modelCheckingStart = std::chrono::high_resolution_clock::now();
for (auto const& state : states) {
eliminateState(flexibleMatrix, oneStepProbabilities, state, flexibleBackwardTransitions, missingStateRewards);
}
STORM_LOG_INFO("Eliminated " << states.size() << " states." << std::endl);
// Eliminate the transitions going into the initial state.
eliminateState(flexibleMatrix, oneStepProbabilities, *newInitialStates.begin(), flexibleBackwardTransitions, missingStateRewards, false);
// Now we need to basically eliminate all chains of not-psi states after phi states and chains of not-phi
// states after psi states.
for (auto const& trans1 : flexibleMatrix.getRow(*newInitialStates.begin())) {
auto initialStateSuccessor = trans1.getColumn();
if (phiStates.get(initialStateSuccessor)) {
// If the state is both a phi and a psi state, we do not need to eliminate chains.
if (psiStates.get(initialStateSuccessor)) {
continue;
}
// At this point, we know that the state satisfies phi and not psi.
// This means, we must compute the probability to reach psi states, which in turn means that we need
// to eliminate all chains of non-psi states between the current state and psi states.
bool hasNonPsiSuccessor = true;
while (hasNonPsiSuccessor) {
hasNonPsiSuccessor = false;
// Only treat the state if it has an outgoing transition other than a self-loop.
auto const currentRow = flexibleMatrix.getRow(initialStateSuccessor);
if (currentRow.size() > 1 || (!currentRow.empty() && currentRow.front().getColumn() != initialStateSuccessor)) {
for (auto const& element : currentRow) {
// If any of the successors is a phi state, we eliminate it (wrt. all its phi predecessors).
if (!psiStates.get(element.getColumn())) {
eliminateState(flexibleMatrix, oneStepProbabilities, element.getColumn(), flexibleBackwardTransitions, missingStateRewards, false, true, phiStates);
hasNonPsiSuccessor = true;
}
}
STORM_LOG_ASSERT(!flexibleMatrix.getRow(initialStateSuccessor).empty(), "(1) New transitions expected to be non-empty.");
}
}
} else {
STORM_LOG_ASSERT(psiStates.get(initialStateSuccessor), "Expected psi state.");
// At this point, we know that the state satisfies psi and not phi.
// This means, we must compute the probability to reach phi states, which in turn means that we need
// to eliminate all chains of non-phi states between the current state and phi states.
bool hasNonPhiSuccessor = true;
while (hasNonPhiSuccessor) {
hasNonPhiSuccessor = false;
// Only treat the state if it has an outgoing transition other than a self-loop.
auto const currentRow = flexibleMatrix.getRow(initialStateSuccessor);
if (currentRow.size() > 1 || (!currentRow.empty() && currentRow.front().getColumn() != initialStateSuccessor)) {
for (auto const& element : currentRow) {
// If any of the successors is a psi state, we eliminate it (wrt. all its psi predecessors).
if (!phiStates.get(element.getColumn())) {
eliminateState(flexibleMatrix, oneStepProbabilities, element.getColumn(), flexibleBackwardTransitions, missingStateRewards, false, true, psiStates);
hasNonPhiSuccessor = true;
}
}
}
}
}
}
ValueType numerator = storm::utility::zero<ValueType>();
ValueType denominator = storm::utility::zero<ValueType>();
for (auto const& trans1 : flexibleMatrix.getRow(*newInitialStates.begin())) {
auto initialStateSuccessor = trans1.getColumn();
if (phiStates.get(initialStateSuccessor)) {
if (psiStates.get(initialStateSuccessor)) {
numerator += trans1.getValue();
denominator += trans1.getValue();
} else {
ValueType additiveTerm = storm::utility::zero<ValueType>();
for (auto const& trans2 : flexibleMatrix.getRow(initialStateSuccessor)) {
STORM_LOG_ASSERT(psiStates.get(trans2.getColumn()), "Expected " << trans2.getColumn() << " to be a psi state.");
additiveTerm += trans2.getValue();
}
additiveTerm *= trans1.getValue();
numerator += additiveTerm;
denominator += additiveTerm;
}
} else {
STORM_LOG_ASSERT(psiStates.get(initialStateSuccessor), "Expected psi state.");
denominator += trans1.getValue();
ValueType additiveTerm = storm::utility::zero<ValueType>();
for (auto const& trans2 : flexibleMatrix.getRow(initialStateSuccessor)) {
STORM_LOG_ASSERT(phiStates.get(trans2.getColumn()), "Expected " << trans2.getColumn() << " to be a phi state.");
additiveTerm += trans2.getValue();
}
numerator += trans1.getValue() * additiveTerm;
}
}
std::chrono::high_resolution_clock::time_point modelCheckingEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point totalTimeEnd = std::chrono::high_resolution_clock::now();
if (storm::settings::generalSettings().isShowStatisticsSet()) {
std::chrono::high_resolution_clock::duration conversionTime = conversionEnd - conversionStart;
std::chrono::milliseconds conversionTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(conversionTime);
std::chrono::high_resolution_clock::duration modelCheckingTime = modelCheckingEnd - modelCheckingStart;
std::chrono::milliseconds modelCheckingTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(modelCheckingTime);
std::chrono::high_resolution_clock::duration totalTime = totalTimeEnd - totalTimeStart;
std::chrono::milliseconds totalTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(totalTime);
STORM_PRINT_AND_LOG(std::endl);
STORM_PRINT_AND_LOG("Time breakdown:" << std::endl);
STORM_PRINT_AND_LOG(" * time for conversion: " << conversionTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(" * time for checking: " << modelCheckingTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG("------------------------------------------" << std::endl);
STORM_PRINT_AND_LOG(" * total time: " << totalTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(std::endl);
}
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, numerator / denominator));
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<ValueType>::checkBooleanLiteralFormula(storm::logic::BooleanLiteralFormula const& stateFormula) {
if (stateFormula.isTrueFormula()) {
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates(), true)));
} else {
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates())));
}
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<ValueType>::checkAtomicLabelFormula(storm::logic::AtomicLabelFormula const& stateFormula) {
STORM_LOG_THROW(model.hasAtomicProposition(stateFormula.getLabel()), storm::exceptions::InvalidPropertyException, "The property refers to unknown label '" << stateFormula.getLabel() << "'.");
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(model.getLabeledStates(stateFormula.getLabel())));
}
template<typename ValueType>
ValueType SparseDtmcEliminationModelChecker<ValueType>::computeReachabilityValue(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType>& oneStepProbabilities, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, boost::optional<std::vector<ValueType>>& stateRewards, boost::optional<std::vector<std::size_t>> const& statePriorities) {
std::chrono::high_resolution_clock::time_point totalTimeStart = std::chrono::high_resolution_clock::now();
// Create a bit vector that represents the subsystem of states we still have to eliminate.
storm::storage::BitVector subsystem = storm::storage::BitVector(transitionMatrix.getRowCount(), true);
std::chrono::high_resolution_clock::time_point conversionStart = std::chrono::high_resolution_clock::now();
// Then, we convert the reduced matrix to a more flexible format to be able to perform state elimination more easily.
FlexibleSparseMatrix flexibleMatrix = getFlexibleSparseMatrix(transitionMatrix);
FlexibleSparseMatrix flexibleBackwardTransitions = getFlexibleSparseMatrix(backwardTransitions, true);
auto conversionEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point modelCheckingStart = std::chrono::high_resolution_clock::now();
uint_fast64_t maximalDepth = 0;
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::State) {
// If we are required to do pure state elimination, we simply create a vector of all states to
// eliminate and sort it according to the given priorities.
// Remove the initial state from the states which we need to eliminate.
subsystem &= ~initialStates;
std::vector<storm::storage::sparse::state_type> states(subsystem.begin(), subsystem.end());
if (statePriorities) {
std::sort(states.begin(), states.end(), [&statePriorities] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return statePriorities.get()[a] < statePriorities.get()[b]; });
}
STORM_LOG_INFO("Eliminating " << states.size() << " states using the state elimination technique." << std::endl);
for (auto const& state : states) {
eliminateState(flexibleMatrix, oneStepProbabilities, state, flexibleBackwardTransitions, stateRewards);
}
STORM_LOG_INFO("Eliminated " << states.size() << " states." << std::endl);
} else if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::Hybrid) {
// When using the hybrid technique, we recursively treat the SCCs up to some size.
storm::utility::ConstantsComparator<ValueType> comparator;
std::vector<storm::storage::sparse::state_type> entryStateQueue;
STORM_LOG_INFO("Eliminating " << subsystem.size() << " states using the hybrid elimination technique." << std::endl);
maximalDepth = treatScc(flexibleMatrix, oneStepProbabilities, initialStates, subsystem, transitionMatrix, flexibleBackwardTransitions, false, 0, storm::settings::sparseDtmcEliminationModelCheckerSettings().getMaximalSccSize(), entryStateQueue, comparator, stateRewards, statePriorities);
// If the entry states were to be eliminated last, we need to do so now.
STORM_LOG_DEBUG("Eliminating " << entryStateQueue.size() << " entry states as a last step.");
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().isEliminateEntryStatesLastSet()) {
for (auto const& state : entryStateQueue) {
eliminateState(flexibleMatrix, oneStepProbabilities, state, flexibleBackwardTransitions, stateRewards);
}
}
STORM_LOG_INFO("Eliminated " << subsystem.size() << " states." << std::endl);
}
// Finally eliminate initial state.
if (!stateRewards) {
// If we are computing probabilities, then we can simply call the state elimination procedure. It
// will scale the transition row of the initial state with 1/(1-loopProbability).
STORM_LOG_INFO("Eliminating initial state " << *initialStates.begin() << "." << std::endl);
eliminateState(flexibleMatrix, oneStepProbabilities, *initialStates.begin(), flexibleBackwardTransitions, stateRewards);
} else {
// If we are computing rewards, we cannot call the state elimination procedure for technical reasons.
// Instead, we need to get rid of a potential loop in this state explicitly.
// Start by finding the self-loop element. Since it can only be the only remaining outgoing transition
// of the initial state, this amounts to checking whether the outgoing transitions of the initial
// state are non-empty.
if (!flexibleMatrix.getRow(*initialStates.begin()).empty()) {
STORM_LOG_ASSERT(flexibleMatrix.getRow(*initialStates.begin()).size() == 1, "At most one outgoing transition expected at this point, but found more.");
STORM_LOG_ASSERT(flexibleMatrix.getRow(*initialStates.begin()).front().getColumn() == *initialStates.begin(), "Remaining entry should be a self-loop, but it is not.");
ValueType loopProbability = flexibleMatrix.getRow(*initialStates.begin()).front().getValue();
loopProbability = storm::utility::one<ValueType>() / (storm::utility::one<ValueType>() - loopProbability);
STORM_LOG_INFO("Scaling the reward of the initial state " << stateRewards.get()[(*initialStates.begin())] << " with " << loopProbability);
stateRewards.get()[(*initialStates.begin())] *= loopProbability;
flexibleMatrix.getRow(*initialStates.begin()).clear();
}
}
// Make sure that we have eliminated all transitions from the initial state.
STORM_LOG_ASSERT(flexibleMatrix.getRow(*initialStates.begin()).empty(), "The transitions of the initial states are non-empty.");
std::chrono::high_resolution_clock::time_point modelCheckingEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point totalTimeEnd = std::chrono::high_resolution_clock::now();
if (storm::settings::generalSettings().isShowStatisticsSet()) {
std::chrono::high_resolution_clock::duration conversionTime = conversionEnd - conversionStart;
std::chrono::milliseconds conversionTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(conversionTime);
std::chrono::high_resolution_clock::duration modelCheckingTime = modelCheckingEnd - modelCheckingStart;
std::chrono::milliseconds modelCheckingTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(modelCheckingTime);
std::chrono::high_resolution_clock::duration totalTime = totalTimeEnd - totalTimeStart;
std::chrono::milliseconds totalTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(totalTime);
STORM_PRINT_AND_LOG(std::endl);
STORM_PRINT_AND_LOG("Time breakdown:" << std::endl);
STORM_PRINT_AND_LOG(" * time for conversion: " << conversionTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(" * time for checking: " << modelCheckingTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG("------------------------------------------" << std::endl);
STORM_PRINT_AND_LOG(" * total time: " << totalTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(std::endl);
STORM_PRINT_AND_LOG("Other:" << std::endl);
STORM_PRINT_AND_LOG(" * number of states eliminated: " << transitionMatrix.getRowCount() << std::endl);
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::Hybrid) {
STORM_PRINT_AND_LOG(" * maximal depth of SCC decomposition: " << maximalDepth << std::endl);
}
}
// Now, we return the value for the only initial state.
if (stateRewards) {
return storm::utility::simplify(stateRewards.get()[*initialStates.begin()]);
} else {
return storm::utility::simplify(oneStepProbabilities[*initialStates.begin()]);
}
}
template<typename ValueType>
std::vector<std::size_t> SparseDtmcEliminationModelChecker<ValueType>::getStatePriorities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& transitionMatrixTransposed, storm::storage::BitVector const& initialStates, std::vector<ValueType> const& oneStepProbabilities) {
std::vector<std::size_t> statePriorities(transitionMatrix.getRowCount());
std::vector<std::size_t> states(transitionMatrix.getRowCount());
for (std::size_t index = 0; index < states.size(); ++index) {
states[index] = index;
}
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Random) {
std::random_shuffle(states.begin(), states.end());
} else {
std::vector<std::size_t> distances;
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Forward || storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::ForwardReversed) {
distances = storm::utility::graph::getDistances(transitionMatrix, initialStates);
} else if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Backward || storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::BackwardReversed) {
// Since the target states were eliminated from the matrix already, we construct a replacement by
// treating all states that have some non-zero probability to go to a target state in one step.
storm::utility::ConstantsComparator<ValueType> comparator;
storm::storage::BitVector pseudoTargetStates(transitionMatrix.getRowCount());
for (std::size_t index = 0; index < oneStepProbabilities.size(); ++index) {
if (!comparator.isZero(oneStepProbabilities[index])) {
pseudoTargetStates.set(index);
}
}
distances = storm::utility::graph::getDistances(transitionMatrixTransposed, pseudoTargetStates);
} else {
STORM_LOG_ASSERT(false, "Illegal sorting order selected.");
}
// In case of the forward or backward ordering, we can sort the states according to the distances.
if (storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Forward || storm::settings::sparseDtmcEliminationModelCheckerSettings().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Backward) {
std::sort(states.begin(), states.end(), [&distances] (storm::storage::sparse::state_type const& state1, storm::storage::sparse::state_type const& state2) { return distances[state1] < distances[state2]; } );
} else {
// Otherwise, we sort them according to descending distances.
std::sort(states.begin(), states.end(), [&distances] (storm::storage::sparse::state_type const& state1, storm::storage::sparse::state_type const& state2) { return distances[state1] > distances[state2]; } );
}
}
// Now convert the ordering of the states to priorities.
for (std::size_t index = 0; index < states.size(); ++index) {
statePriorities[states[index]] = index;
}
return statePriorities;
}
template<typename ValueType>
uint_fast64_t SparseDtmcEliminationModelChecker<ValueType>::treatScc(FlexibleSparseMatrix& matrix, std::vector<ValueType>& oneStepProbabilities, storm::storage::BitVector const& entryStates, storm::storage::BitVector const& scc, storm::storage::SparseMatrix<ValueType> const& forwardTransitions, FlexibleSparseMatrix& backwardTransitions, bool eliminateEntryStates, uint_fast64_t level, uint_fast64_t maximalSccSize, std::vector<storm::storage::sparse::state_type>& entryStateQueue, storm::utility::ConstantsComparator<ValueType> const& comparator, boost::optional<std::vector<ValueType>>& stateRewards, boost::optional<std::vector<std::size_t>> const& statePriorities) {
uint_fast64_t maximalDepth = level;
// If the SCCs are large enough, we try to split them further.
if (scc.getNumberOfSetBits() > maximalSccSize) {
STORM_LOG_DEBUG("SCC is large enough (" << scc.getNumberOfSetBits() << " states) to be decomposed further.");
// Here, we further decompose the SCC into sub-SCCs.
storm::storage::StronglyConnectedComponentDecomposition<ValueType> decomposition(forwardTransitions, scc & ~entryStates, false, false);
STORM_LOG_DEBUG("Decomposed SCC into " << decomposition.size() << " sub-SCCs.");
// Store a bit vector of remaining SCCs so we can be flexible when it comes to the order in which
// we eliminate the SCCs.
storm::storage::BitVector remainingSccs(decomposition.size(), true);
// First, get rid of the trivial SCCs.
std::vector<std::pair<storm::storage::sparse::state_type, uint_fast64_t>> trivialSccs;
for (uint_fast64_t sccIndex = 0; sccIndex < decomposition.size(); ++sccIndex) {
storm::storage::StronglyConnectedComponent const& scc = decomposition.getBlock(sccIndex);
if (scc.isTrivial()) {
storm::storage::sparse::state_type onlyState = *scc.begin();
trivialSccs.emplace_back(onlyState, sccIndex);
}
}
// If we are given priorities, sort the trivial SCCs accordingly.
if (statePriorities) {
std::sort(trivialSccs.begin(), trivialSccs.end(), [&statePriorities] (std::pair<storm::storage::sparse::state_type, uint_fast64_t> const& a, std::pair<storm::storage::sparse::state_type, uint_fast64_t> const& b) { return statePriorities.get()[a.first] < statePriorities.get()[b.first]; });
}
STORM_LOG_DEBUG("Eliminating " << trivialSccs.size() << " trivial SCCs.");
for (auto const& stateIndexPair : trivialSccs) {
eliminateState(matrix, oneStepProbabilities, stateIndexPair.first, backwardTransitions, stateRewards);
remainingSccs.set(stateIndexPair.second, false);
}
STORM_LOG_DEBUG("Eliminated all trivial SCCs.");
// And then recursively treat the remaining sub-SCCs.
STORM_LOG_DEBUG("Eliminating " << remainingSccs.getNumberOfSetBits() << " remaining SCCs on level " << level << ".");
for (auto sccIndex : remainingSccs) {
storm::storage::StronglyConnectedComponent const& newScc = decomposition.getBlock(sccIndex);
// Rewrite SCC into bit vector and subtract it from the remaining states.
storm::storage::BitVector newSccAsBitVector(forwardTransitions.getRowCount(), newScc.begin(), newScc.end());
// Determine the set of entry states of the SCC.
storm::storage::BitVector entryStates(forwardTransitions.getRowCount());
for (auto const& state : newScc) {
for (auto const& predecessor : backwardTransitions.getRow(state)) {
if (predecessor.getValue() != storm::utility::zero<ValueType>() && !newSccAsBitVector.get(predecessor.getColumn())) {
entryStates.set(state);
}
}
}
// Recursively descend in SCC-hierarchy.
uint_fast64_t depth = treatScc(matrix, oneStepProbabilities, entryStates, newSccAsBitVector, forwardTransitions, backwardTransitions, !storm::settings::sparseDtmcEliminationModelCheckerSettings().isEliminateEntryStatesLastSet(), level + 1, maximalSccSize, entryStateQueue, comparator, stateRewards, statePriorities);
maximalDepth = std::max(maximalDepth, depth);
}
} else {
// In this case, we perform simple state elimination in the current SCC.
STORM_LOG_DEBUG("SCC of size " << scc.getNumberOfSetBits() << " is small enough to be eliminated directly.");
storm::storage::BitVector remainingStates = scc & ~entryStates;
std::vector<uint_fast64_t> states(remainingStates.begin(), remainingStates.end());
// If we are given priorities, sort the trivial SCCs accordingly.
if (statePriorities) {
std::sort(states.begin(), states.end(), [&statePriorities] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return statePriorities.get()[a] < statePriorities.get()[b]; });
}
// Eliminate the remaining states that do not have a self-loop (in the current, i.e. modified)
// transition probability matrix.
for (auto const& state : states) {
eliminateState(matrix, oneStepProbabilities, state, backwardTransitions, stateRewards);
}
STORM_LOG_DEBUG("Eliminated all states of SCC.");
}
// Finally, eliminate the entry states (if we are required to do so).
if (eliminateEntryStates) {
STORM_LOG_DEBUG("Finally, eliminating/adding entry states.");
for (auto state : entryStates) {
eliminateState(matrix, oneStepProbabilities, state, backwardTransitions, stateRewards);
}
STORM_LOG_DEBUG("Eliminated/added entry states.");
} else {
for (auto state : entryStates) {
entryStateQueue.push_back(state);
}
}
return maximalDepth;
}
namespace {
static int chunkCounter = 0;
static int counter = 0;
}
template<typename ValueType>
void SparseDtmcEliminationModelChecker<ValueType>::eliminateState(FlexibleSparseMatrix& matrix, std::vector<ValueType>& oneStepProbabilities, uint_fast64_t state, FlexibleSparseMatrix& backwardTransitions, boost::optional<std::vector<ValueType>>& stateRewards, bool removeForwardTransitions, bool constrained, storm::storage::BitVector const& predecessorConstraint) {
auto eliminationStart = std::chrono::high_resolution_clock::now();
++counter;
STORM_LOG_DEBUG("Eliminating state " << state << ".");
if (counter > matrix.getNumberOfRows() / 10) {
++chunkCounter;
STORM_LOG_INFO("Eliminated " << (chunkCounter * 10) << "% of the states." << std::endl);
counter = 0;
}
bool hasSelfLoop = false;
ValueType loopProbability = storm::utility::zero<ValueType>();
// Start by finding loop probability.
typename FlexibleSparseMatrix::row_type& currentStateSuccessors = matrix.getRow(state);
for (auto entryIt = currentStateSuccessors.begin(), entryIte = currentStateSuccessors.end(); entryIt != entryIte; ++entryIt) {
if (entryIt->getColumn() >= state) {
if (entryIt->getColumn() == state) {
loopProbability = entryIt->getValue();
hasSelfLoop = true;
// If we do not clear the forward transitions completely, we need to remove the self-loop,
// because we scale all the other outgoing transitions with it anyway..
if (!removeForwardTransitions) {
currentStateSuccessors.erase(entryIt);
}
}
break;
}
}
// Scale all entries in this row with (1 / (1 - loopProbability)) only in case there was a self-loop.
std::size_t scaledSuccessors = 0;
if (hasSelfLoop) {
loopProbability = storm::utility::one<ValueType>() / (storm::utility::one<ValueType>() - loopProbability);
storm::utility::simplify(loopProbability);
for (auto& entry : matrix.getRow(state)) {
// Only scale the non-diagonal entries.
if (entry.getColumn() != state) {
++scaledSuccessors;
entry.setValue(storm::utility::simplify(entry.getValue() * loopProbability));
}
}
if (!stateRewards) {
oneStepProbabilities[state] = oneStepProbabilities[state] * loopProbability;
}
}
STORM_LOG_DEBUG((hasSelfLoop ? "State has self-loop." : "State does not have a self-loop."));
// Now connect the predecessors of the state being eliminated with its successors.
typename FlexibleSparseMatrix::row_type& currentStatePredecessors = backwardTransitions.getRow(state);
std::size_t numberOfPredecessors = currentStatePredecessors.size();
std::size_t predecessorForwardTransitionCount = 0;
for (auto const& predecessorEntry : currentStatePredecessors) {
uint_fast64_t predecessor = predecessorEntry.getColumn();
// Skip the state itself as one of its predecessors.
if (predecessor == state) {
assert(hasSelfLoop);
continue;
}
// Skip the state if the elimination is constrained, but the predecessor is not in the constraint.
if (constrained && !predecessorConstraint.get(predecessor)) {
continue;
}
// First, find the probability with which the predecessor can move to the current state, because
// the other probabilities need to be scaled with this factor.
typename FlexibleSparseMatrix::row_type& predecessorForwardTransitions = matrix.getRow(predecessor);
predecessorForwardTransitionCount += predecessorForwardTransitions.size();
typename FlexibleSparseMatrix::row_type::iterator multiplyElement = std::find_if(predecessorForwardTransitions.begin(), predecessorForwardTransitions.end(), [&](storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type> const& a) { return a.getColumn() == state; });
// Make sure we have found the probability and set it to zero.
STORM_LOG_THROW(multiplyElement != predecessorForwardTransitions.end(), storm::exceptions::InvalidStateException, "No probability for successor found.");
ValueType multiplyFactor = multiplyElement->getValue();
multiplyElement->setValue(storm::utility::zero<ValueType>());
// At this point, we need to update the (forward) transitions of the predecessor.
typename FlexibleSparseMatrix::row_type::iterator first1 = predecessorForwardTransitions.begin();
typename FlexibleSparseMatrix::row_type::iterator last1 = predecessorForwardTransitions.end();
typename FlexibleSparseMatrix::row_type::iterator first2 = currentStateSuccessors.begin();
typename FlexibleSparseMatrix::row_type::iterator last2 = currentStateSuccessors.end();
typename FlexibleSparseMatrix::row_type newSuccessors;
newSuccessors.reserve((last1 - first1) + (last2 - first2));
std::insert_iterator<typename FlexibleSparseMatrix::row_type> result(newSuccessors, newSuccessors.end());
// Now we merge the two successor lists. (Code taken from std::set_union and modified to suit our needs).
for (; first1 != last1; ++result) {
// Skip the transitions to the state that is currently being eliminated.
if (first1->getColumn() == state || (first2 != last2 && first2->getColumn() == state)) {
if (first1->getColumn() == state) {
++first1;
}
if (first2 != last2 && first2->getColumn() == state) {
++first2;
}
continue;
}
if (first2 == last2) {
std::copy_if(first1, last1, result, [&] (storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type> const& a) { return a.getColumn() != state; } );
break;
}
if (first2->getColumn() < first1->getColumn()) {
*result = storm::utility::simplify(std::move(*first2 * multiplyFactor));
++first2;
} else if (first1->getColumn() < first2->getColumn()) {
*result = *first1;
++first1;
} else {
*result = storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type>(first1->getColumn(), storm::utility::simplify(first1->getValue() + storm::utility::simplify(multiplyFactor * first2->getValue())));
++first1;
++first2;
}
}
for (; first2 != last2; ++first2) {
if (first2->getColumn() != state) {
*result = storm::utility::simplify(std::move(*first2 * multiplyFactor));
}
}
// Now move the new transitions in place.
predecessorForwardTransitions = std::move(newSuccessors);
if (!stateRewards) {
// Add the probabilities to go to a target state in just one step if we have to compute probabilities.
oneStepProbabilities[predecessor] += storm::utility::simplify(multiplyFactor * oneStepProbabilities[state]);
STORM_LOG_DEBUG("Fixed new next-state probabilities of predecessor states.");
} else {
// If we are computing rewards, we basically scale the state reward of the state to eliminate and
// add the result to the state reward of the predecessor.
if (hasSelfLoop) {
stateRewards.get()[predecessor] += storm::utility::simplify(multiplyFactor * loopProbability * stateRewards.get()[state]);
} else {
stateRewards.get()[predecessor] += storm::utility::simplify(multiplyFactor * stateRewards.get()[state]);
}
}
}
// Finally, we need to add the predecessor to the set of predecessors of every successor.
for (auto const& successorEntry : currentStateSuccessors) {
typename FlexibleSparseMatrix::row_type& successorBackwardTransitions = backwardTransitions.getRow(successorEntry.getColumn());
// Delete the current state as a predecessor of the successor state.
typename FlexibleSparseMatrix::row_type::iterator elimIt = std::find_if(successorBackwardTransitions.begin(), successorBackwardTransitions.end(), [&](storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type> const& a) { return a.getColumn() == state; });
if (elimIt != successorBackwardTransitions.end()) {
successorBackwardTransitions.erase(elimIt);
}
typename FlexibleSparseMatrix::row_type::iterator first1 = successorBackwardTransitions.begin();
typename FlexibleSparseMatrix::row_type::iterator last1 = successorBackwardTransitions.end();
typename FlexibleSparseMatrix::row_type::iterator first2 = currentStatePredecessors.begin();
typename FlexibleSparseMatrix::row_type::iterator last2 = currentStatePredecessors.end();
typename FlexibleSparseMatrix::row_type newPredecessors;
newPredecessors.reserve((last1 - first1) + (last2 - first2));
std::insert_iterator<typename FlexibleSparseMatrix::row_type> result(newPredecessors, newPredecessors.end());
for (; first1 != last1; ++result) {
if (first2 == last2) {
std::copy_if(first1, last1, result, [&] (storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type> const& a) { return a.getColumn() != state; });
break;
}
if (first2->getColumn() < first1->getColumn()) {
if (first2->getColumn() != state) {
*result = *first2;
}
++first2;
} else {
if (first1->getColumn() != state) {
*result = *first1;
}
if (first1->getColumn() == first2->getColumn()) {
++first2;
}
++first1;
}
}
std::copy_if(first2, last2, result, [&] (storm::storage::MatrixEntry<typename FlexibleSparseMatrix::index_type, typename FlexibleSparseMatrix::value_type> const& a) { return a.getColumn() != state; });
// Now move the new predecessors in place.
successorBackwardTransitions = std::move(newPredecessors);
}
STORM_LOG_DEBUG("Fixed predecessor lists of successor states.");
if (removeForwardTransitions) {
// Clear the eliminated row to reduce memory consumption.
currentStateSuccessors.clear();
currentStateSuccessors.shrink_to_fit();
}
if (!constrained) {
// FIXME: is this safe? If the elimination is constrained, we might have to repair the predecessor relation.
currentStatePredecessors.clear();
currentStatePredecessors.shrink_to_fit();
}
auto eliminationEnd = std::chrono::high_resolution_clock::now();
auto eliminationTime = eliminationEnd - eliminationStart;
}
template<typename ValueType>
SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::FlexibleSparseMatrix(index_type rows) : data(rows) {
// Intentionally left empty.
}
template<typename ValueType>
void SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::reserveInRow(index_type row, index_type numberOfElements) {
this->data[row].reserve(numberOfElements);
}
template<typename ValueType>
typename SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::row_type& SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::getRow(index_type index) {
return this->data[index];
}
template<typename ValueType>
typename SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::row_type const& SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::getRow(index_type index) const {
return this->data[index];
}
template<typename ValueType>
typename SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::index_type SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::getNumberOfRows() const {
return this->data.size();
}
template<typename ValueType>
bool SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::hasSelfLoop(storm::storage::sparse::state_type state) {
for (auto const& entry : this->getRow(state)) {
if (entry.getColumn() < state) {
continue;
} else if (entry.getColumn() > state) {
return false;
} else if (entry.getColumn() == state) {
return true;
}
}
return false;
}
template<typename ValueType>
void SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix::print() const {
for (uint_fast64_t index = 0; index < this->data.size(); ++index) {
std::cout << index << " - ";
for (auto const& element : this->getRow(index)) {
std::cout << "(" << element.getColumn() << ", " << element.getValue() << ") ";
}
std::cout << std::endl;
}
}
template<typename ValueType>
typename SparseDtmcEliminationModelChecker<ValueType>::FlexibleSparseMatrix SparseDtmcEliminationModelChecker<ValueType>::getFlexibleSparseMatrix(storm::storage::SparseMatrix<ValueType> const& matrix, bool setAllValuesToOne) {
FlexibleSparseMatrix flexibleMatrix(matrix.getRowCount());
// A comparator used for comparing probabilities.
storm::utility::ConstantsComparator<ValueType> comparator;
for (typename FlexibleSparseMatrix::index_type rowIndex = 0; rowIndex < matrix.getRowCount(); ++rowIndex) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = matrix.getRow(rowIndex);
flexibleMatrix.reserveInRow(rowIndex, row.getNumberOfEntries());
for (auto const& element : row) {
// If the probability is zero, we skip this entry.
if (comparator.isZero(element.getValue())) {
continue;
}
if (setAllValuesToOne) {
flexibleMatrix.getRow(rowIndex).emplace_back(element.getColumn(), storm::utility::one<ValueType>());
} else {
flexibleMatrix.getRow(rowIndex).emplace_back(element);
}
}
}
return flexibleMatrix;
}
template class SparseDtmcEliminationModelChecker<double>;
#ifdef PARAMETRIC_SYSTEMS
template class FlexibleSparseMatrix<RationalFunction>;
template class SparseDtmcEliminationModelChecker<RationalFunction>;
#endif
} // namespace modelchecker
} // namespace storm