You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

291 lines
18 KiB

#include "storm/solver/stateelimination/EliminatorBase.h"
#include "storm/utility/stateelimination.h"
#include "storm/utility/macros.h"
#include "storm/utility/constants.h"
#include "storm/exceptions/InvalidStateException.h"
namespace storm {
namespace solver {
namespace stateelimination {
using namespace storm::utility::stateelimination;
template<typename ValueType, ScalingMode Mode>
EliminatorBase<ValueType, Mode>::EliminatorBase(storm::storage::FlexibleSparseMatrix<ValueType>& matrix, storm::storage::FlexibleSparseMatrix<ValueType>& transposedMatrix) : matrix(matrix), transposedMatrix(transposedMatrix) {
// Intentionally left empty.
}
template<typename ValueType, ScalingMode Mode>
void EliminatorBase<ValueType, Mode>::eliminate(uint64_t row, uint64_t column, bool clearRow) {
// Start by finding the entry in the given column.
bool hasEntryInColumn = false;
ValueType columnValue = storm::utility::zero<ValueType>();
FlexibleRowType& entriesInRow = matrix.getRow(row);
for (auto entryIt = entriesInRow.begin(), entryIte = entriesInRow.end(); entryIt != entryIte; ++entryIt) {
if (entryIt->getColumn() >= column) {
if (entryIt->getColumn() == column) {
columnValue = entryIt->getValue();
hasEntryInColumn = true;
// If we do not clear the row completely, we need to remove the entry in the requested column.
// All other elements are scaled with the entry anyway.
if (!clearRow) {
entriesInRow.erase(entryIt);
}
}
break;
}
}
// Scale all entries in this row.
// Depending on the scaling mode, we scale the other entries of the row.
STORM_LOG_TRACE((hasEntryInColumn ? "State has entry in column." : "State does not have entry in column."));
if (Mode == ScalingMode::Divide) {
STORM_LOG_ASSERT(hasEntryInColumn, "The scaling mode 'divide' requires an element in the given column.");
STORM_LOG_ASSERT(storm::utility::isZero(columnValue), "The scaling mode 'divide' requires a non-zero element in the given column.");
columnValue = storm::utility::one<ValueType>() / columnValue;
} else if (Mode == ScalingMode::DivideOneMinus) {
if (hasEntryInColumn) {
STORM_LOG_ASSERT(columnValue != storm::utility::one<ValueType>(), "The scaling mode 'divide-one-minus' requires a non-one value in the given column.");
columnValue = storm::utility::one<ValueType>() / (storm::utility::one<ValueType>() - columnValue);
columnValue = storm::utility::simplify(columnValue);
}
}
if (hasEntryInColumn) {
for (auto entryIt = entriesInRow.begin(), entryIte = entriesInRow.end(); entryIt != entryIte; ++entryIt) {
// Only scale the entries in a different column.
if (entryIt->getColumn() != column) {
entryIt->setValue(storm::utility::simplify((ValueType) (entryIt->getValue() * columnValue)));
}
}
updateValue(row, columnValue);
}
// Now substitute the row entries in all other rows that contain an element whose column is the current row.
FlexibleRowType& elementsWithEntryInColumnEqualRow = transposedMatrix.getRow(column);
// In case we have a constrained elimination, we need to keep track of the rows that keep their value
// in the column equal to the current row.
FlexibleRowType rowsKeepingEntryInColumnEqualRow;
// For each entry in the row d, we need to build a list of other rows that will contain an element in the
// column d.
std::vector<FlexibleRowType> newBackwardEntries(entriesInRow.size());
for (auto& backwardEntry : newBackwardEntries) {
backwardEntry.reserve(elementsWithEntryInColumnEqualRow.size());
}
// Now go through the rows with an entry in the column corresponding to the current row and substitute
// the elements of this row unless the elimination is filtered.
for (auto const& predecessorEntry : elementsWithEntryInColumnEqualRow) {
uint_fast64_t predecessor = predecessorEntry.getColumn();
STORM_LOG_TRACE("Found predecessor " << predecessor << ".");
// Skip the row itself.
if (predecessor == row) {
assert(hasEntryInColumn);
continue;
}
// Skip the state if the elimination is constrained, but the predecessor is not in the constraint.
if (isFilterPredecessor() && !filterPredecessor(predecessor)) {
rowsKeepingEntryInColumnEqualRow.emplace_back(predecessorEntry);
STORM_LOG_TRACE("Not eliminating predecessor " << predecessor << ", because it does not fit the filter.");
continue;
}
STORM_LOG_TRACE("Eliminating predecessor " << predecessor << ".");
// First, find the probability with which the predecessor can move to the current state, because
// the forward probabilities of the state to be eliminated need to be scaled with this factor.
FlexibleRowType& predecessorForwardTransitions = matrix.getRow(predecessor);
FlexibleRowIterator multiplyElement = std::find_if(predecessorForwardTransitions.begin(), predecessorForwardTransitions.end(), [&](storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type> const& a) { return a.getColumn() == column; });
// Make sure we have found the probability and set it to zero.
STORM_LOG_THROW(multiplyElement != predecessorForwardTransitions.end(), storm::exceptions::InvalidStateException, "No probability for successor found.");
ValueType multiplyFactor = multiplyElement->getValue();
multiplyElement->setValue(storm::utility::zero<ValueType>());
// At this point, we need to update the (forward) transitions of the predecessor.
FlexibleRowIterator first1 = predecessorForwardTransitions.begin();
FlexibleRowIterator last1 = predecessorForwardTransitions.end();
FlexibleRowIterator first2 = entriesInRow.begin();
FlexibleRowIterator last2 = entriesInRow.end();
FlexibleRowType newSuccessors;
newSuccessors.reserve((last1 - first1) + (last2 - first2));
std::insert_iterator<FlexibleRowType> result(newSuccessors, newSuccessors.end());
uint_fast64_t successorOffsetInNewBackwardTransitions = 0;
// Now we merge the two successor lists. (Code taken from std::set_union and modified to suit our needs).
for (; first1 != last1; ++result) {
// Skip the transitions to the state that is currently being eliminated.
if (first1->getColumn() == column || (first2 != last2 && first2->getColumn() == column)) {
if (first1->getColumn() == column) {
++first1;
}
if (first2 != last2 && first2->getColumn() == column) {
++first2;
}
continue;
}
if (first2 == last2) {
std::copy_if(first1, last1, result, [&] (storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type> const& a) { return a.getColumn() != column; } );
break;
}
if (first2->getColumn() < first1->getColumn()) {
auto successorEntry = storm::utility::simplify(std::move(*first2 * multiplyFactor));
*result = successorEntry;
newBackwardEntries[successorOffsetInNewBackwardTransitions].emplace_back(predecessor, successorEntry.getValue());
++first2;
++successorOffsetInNewBackwardTransitions;
} else if (first1->getColumn() < first2->getColumn()) {
*result = *first1;
++first1;
} else {
ValueType sprod = multiplyFactor * first2->getValue();
ValueType sum = first1->getValue() + storm::utility::simplify(sprod);
auto probability = storm::utility::simplify(sum);
*result = storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type>(first1->getColumn(), probability);
newBackwardEntries[successorOffsetInNewBackwardTransitions].emplace_back(predecessor, probability);
++first1;
++first2;
++successorOffsetInNewBackwardTransitions;
}
}
for (; first2 != last2; ++first2) {
if (first2->getColumn() != column) {
auto stateProbability = storm::utility::simplify(std::move(*first2 * multiplyFactor));
*result = stateProbability;
newBackwardEntries[successorOffsetInNewBackwardTransitions].emplace_back(predecessor, stateProbability.getValue());
++successorOffsetInNewBackwardTransitions;
}
}
// Now move the new transitions in place.
predecessorForwardTransitions = std::move(newSuccessors);
STORM_LOG_TRACE("Fixed new next-state probabilities of predecessor state " << predecessor << ".");
updatePredecessor(predecessor, multiplyFactor, row);
STORM_LOG_TRACE("Updating priority of predecessor.");
updatePriority(predecessor);
}
// Finally, we need to add the predecessor to the set of predecessors of every successor.
uint_fast64_t successorOffsetInNewBackwardTransitions = 0;
for (auto const& successorEntry : entriesInRow) {
if (successorEntry.getColumn() == column) {
continue;
}
FlexibleRowType& successorBackwardTransitions = transposedMatrix.getRow(successorEntry.getColumn());
// Delete the current state as a predecessor of the successor state only if we are going to remove the
// current state's forward transitions.
if (clearRow) {
FlexibleRowIterator elimIt = std::find_if(successorBackwardTransitions.begin(), successorBackwardTransitions.end(), [&](storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type> const& a) { return a.getColumn() == row; });
STORM_LOG_ASSERT(elimIt != successorBackwardTransitions.end(), "Expected a proper backward transition from " << successorEntry.getColumn() << " to " << column << ", but found none.");
successorBackwardTransitions.erase(elimIt);
}
FlexibleRowIterator first1 = successorBackwardTransitions.begin();
FlexibleRowIterator last1 = successorBackwardTransitions.end();
FlexibleRowIterator first2 = newBackwardEntries[successorOffsetInNewBackwardTransitions].begin();
FlexibleRowIterator last2 = newBackwardEntries[successorOffsetInNewBackwardTransitions].end();
FlexibleRowType newPredecessors;
newPredecessors.reserve((last1 - first1) + (last2 - first2));
std::insert_iterator<FlexibleRowType> result(newPredecessors, newPredecessors.end());
for (; first1 != last1; ++result) {
if (first2 == last2) {
std::copy(first1, last1, result);
break;
}
if (first2->getColumn() < first1->getColumn()) {
if (first2->getColumn() != row) {
*result = *first2;
}
++first2;
} else if (first1->getColumn() == first2->getColumn()) {
if (estimateComplexity(first1->getValue()) > estimateComplexity(first2->getValue())) {
*result = *first1;
} else {
*result = *first2;
}
++first1;
++first2;
} else {
*result = *first1;
++first1;
}
}
if (isFilterPredecessor()) {
std::copy_if(first2, last2, result, [&] (storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type> const& a) { return a.getColumn() != row && filterPredecessor(a.getColumn()); });
} else {
std::copy_if(first2, last2, result, [&] (storm::storage::MatrixEntry<typename storm::storage::FlexibleSparseMatrix<ValueType>::index_type, typename storm::storage::FlexibleSparseMatrix<ValueType>::value_type> const& a) { return a.getColumn() != row; });
}
// Now move the new predecessors in place.
successorBackwardTransitions = std::move(newPredecessors);
++successorOffsetInNewBackwardTransitions;
}
STORM_LOG_TRACE("Fixed predecessor lists of successor states.");
// Clear the row if requested.
if (clearRow) {
entriesInRow.clear();
entriesInRow.shrink_to_fit();
}
// If the substitution was filtered, we need to store the new rows that have an entry in column equal to this row.
if (isFilterPredecessor()) {
elementsWithEntryInColumnEqualRow = std::move(rowsKeepingEntryInColumnEqualRow);
} else {
elementsWithEntryInColumnEqualRow.clear();
elementsWithEntryInColumnEqualRow.shrink_to_fit();
}
}
template<typename ValueType, ScalingMode Mode>
void EliminatorBase<ValueType, Mode>::updateValue(storm::storage::sparse::state_type const&, ValueType const&) {
// Intentionally left empty.
}
template<typename ValueType, ScalingMode Mode>
void EliminatorBase<ValueType, Mode>::updatePredecessor(storm::storage::sparse::state_type const&, ValueType const&, storm::storage::sparse::state_type const&) {
// Intentionally left empty.
}
template<typename ValueType, ScalingMode Mode>
void EliminatorBase<ValueType, Mode>::updatePriority(storm::storage::sparse::state_type const&) {
// Intentionally left empty.
}
template<typename ValueType, ScalingMode Mode>
bool EliminatorBase<ValueType, Mode>::filterPredecessor(storm::storage::sparse::state_type const&) {
STORM_LOG_ASSERT(false, "Must not filter predecessors.");
return false;
}
template<typename ValueType, ScalingMode Mode>
bool EliminatorBase<ValueType, Mode>::isFilterPredecessor() const {
return false;
}
template class EliminatorBase<double, ScalingMode::Divide>;
template class EliminatorBase<double, ScalingMode::DivideOneMinus>;
#ifdef STORM_HAVE_CARL
template class EliminatorBase<storm::RationalNumber, ScalingMode::Divide>;
template class EliminatorBase<storm::RationalFunction, ScalingMode::Divide>;
template class EliminatorBase<storm::RationalNumber, ScalingMode::DivideOneMinus>;
template class EliminatorBase<storm::RationalFunction, ScalingMode::DivideOneMinus>;
#endif
}
}
}