You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

864 lines
43 KiB

#include <boost/functional/hash.hpp>
// To detect whether the usage of TBB is possible, this include is neccessary
#include "storm-config.h"
#ifdef STORM_HAVE_INTELTBB
#include "tbb/tbb.h"
#endif
#include "src/storage/SparseMatrix.h"
#include "src/exceptions/InvalidStateException.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
namespace storm {
namespace storage {
template<typename T>
SparseMatrixBuilder<T>::SparseMatrixBuilder(uint_fast64_t rows, uint_fast64_t columns, uint_fast64_t entries) : rowCountSet(rows != 0), rowCount(rows), columnCountSet(columns != 0), columnCount(columns), entryCount(entries), storagePreallocated(rows != 0 && columns != 0 && entries != 0), columnsAndValues(), rowIndications(), currentEntryCount(0), lastRow(0), lastColumn(0) {
this->prepareInternalStorage();
}
template<typename T>
void SparseMatrixBuilder<T>::addNextValue(uint_fast64_t row, uint_fast64_t column, T const& value) {
// Depending on whether the internal data storage was preallocated or not, adding the value is done somewhat
// differently.
if (storagePreallocated) {
// Check whether the given row and column positions are valid and throw error otherwise.
if (row >= rowCount || column >= columnCount) {
throw storm::exceptions::OutOfRangeException() << "Illegal call to SparseMatrixBuilder::addNextValue: adding entry at out-of-bounds position (" << row << ", " << column << ") in matrix of size (" << rowCount << ", " << columnCount << ").";
}
} else {
if (rowCountSet) {
if (row >= rowCount) {
throw storm::exceptions::OutOfRangeException() << "Illegal call to SparseMatrixBuilder::addNextValue: adding entry at out-of-bounds row " << row << " in matrix with " << rowCount << " rows.";
}
}
if (columnCountSet) {
if (column >= columnCount) {
throw storm::exceptions::OutOfRangeException() << "Illegal call to SparseMatrixBuilder::addNextValue: adding entry at out-of-bounds column " << column << " in matrix with " << columnCount << " columns.";
}
}
}
// Check that we did not move backwards wrt. the row.
if (row < lastRow) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrixBuilder::addNextValue: adding an element in row " << row << ", but an element in row " << lastRow << " has already been added.";
}
// Check that we did not move backwards wrt. to column.
if (row == lastRow && column < lastColumn) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrixBuilder::addNextValue: adding an element in column " << column << " in row " << row << ", but an element in column " << lastColumn << " has already been added in that row.";
}
// If we switched to another row, we have to adjust the missing entries in the row indices vector.
if (row != lastRow) {
if (storagePreallocated) {
// If the storage was preallocated, we can access the elements in the vectors with the subscript
// operator.
for (uint_fast64_t i = lastRow + 1; i <= row; ++i) {
rowIndications[i] = currentEntryCount;
}
} else {
// Otherwise, we need to push the correct values to the vectors, which might trigger reallocations.
for (uint_fast64_t i = lastRow + 1; i <= row; ++i) {
rowIndications.push_back(currentEntryCount);
}
}
lastRow = row;
}
lastColumn = column;
// Finally, set the element and increase the current size.
if (storagePreallocated) {
columnsAndValues[currentEntryCount] = std::make_pair(column, value);
} else {
columnsAndValues.emplace_back(column, value);
if (!columnCountSet) {
columnCount = std::max(columnCount, column + 1);
}
if (!rowCountSet) {
rowCount = row + 1;
}
}
++currentEntryCount;
}
template<typename T>
SparseMatrix<T> SparseMatrixBuilder<T>::build(uint_fast64_t overriddenRowCount, uint_fast64_t overriddenColumnCount) {
// Check whether it's safe to finalize the matrix and throw error otherwise.
if (storagePreallocated && currentEntryCount != entryCount) {
throw storm::exceptions::InvalidStateException() << "Illegal call to SparseMatrix::finalize: expected " << entryCount << " entries, but got " << currentEntryCount << " instead.";
} else {
// Fill in the missing entries in the row indices array, as there may be empty rows at the end.
if (storagePreallocated) {
for (uint_fast64_t i = lastRow + 1; i < rowCount; ++i) {
rowIndications[i] = currentEntryCount;
}
} else {
if (!rowCountSet) {
rowCount = std::max(overriddenRowCount, rowCount);
}
for (uint_fast64_t i = lastRow + 1; i < rowCount; ++i) {
rowIndications.push_back(currentEntryCount);
}
}
// We put a sentinel element at the last position of the row indices array. This eases iteration work,
// as now the indices of row i are always between rowIndications[i] and rowIndications[i + 1], also for
// the first and last row.
if (storagePreallocated) {
rowIndications[rowCount] = currentEntryCount;
} else {
rowIndications.push_back(currentEntryCount);
if (!columnCountSet) {
columnCount = std::max(columnCount, overriddenColumnCount);
}
}
entryCount = currentEntryCount;
}
return SparseMatrix<T>(columnCount, std::move(rowIndications), std::move(columnsAndValues));
}
template<typename T>
void SparseMatrixBuilder<T>::prepareInternalStorage() {
// Only allocate the memory if the dimensions of the matrix are already known.
if (storagePreallocated) {
columnsAndValues = std::vector<std::pair<uint_fast64_t, T>>(entryCount, std::make_pair(0, storm::utility::constantZero<T>()));
rowIndications = std::vector<uint_fast64_t>(rowCount + 1, 0);
} else {
rowIndications.push_back(0);
}
}
template<typename T>
SparseMatrix<T>::rows::rows(iterator begin, uint_fast64_t entryCount) : beginIterator(begin), entryCount(entryCount) {
// Intentionally left empty.
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::rows::begin() {
return beginIterator;
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::rows::end() {
return beginIterator + entryCount;
}
template<typename T>
SparseMatrix<T>::const_rows::const_rows(const_iterator begin, uint_fast64_t entryCount) : beginIterator(begin), entryCount(entryCount) {
// Intentionally left empty.
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::const_rows::begin() const {
return beginIterator;
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::const_rows::end() const {
return beginIterator + entryCount;
}
template<typename T>
SparseMatrix<T>::SparseMatrix() : rowCount(0), columnCount(0), entryCount(0), columnsAndValues(), rowIndications() {
// Intentionally left empty.
}
template<typename T>
SparseMatrix<T>::SparseMatrix(SparseMatrix<T> const& other) : rowCount(other.rowCount), columnCount(other.columnCount), entryCount(other.entryCount), columnsAndValues(other.columnsAndValues), rowIndications(other.rowIndications) {
// Intentionally left empty.
}
template<typename T>
SparseMatrix<T>::SparseMatrix(SparseMatrix<T>&& other) : rowCount(other.rowCount), columnCount(other.columnCount), entryCount(other.entryCount), columnsAndValues(std::move(other.columnsAndValues)), rowIndications(std::move(other.rowIndications)) {
// Now update the source matrix
other.rowCount = 0;
other.columnCount = 0;
other.entryCount = 0;
}
template<typename T>
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t> const& rowIndications, std::vector<std::pair<uint_fast64_t, T>> const& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(columnsAndValues.size()), columnsAndValues(columnsAndValues), rowIndications(rowIndications) {
// Intentionally left empty.
}
template<typename T>
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t>&& rowIndications, std::vector<std::pair<uint_fast64_t, T>>&& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(columnsAndValues.size()), columnsAndValues(std::move(columnsAndValues)), rowIndications(std::move(rowIndications)) {
// Intentionally left empty.
}
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator=(SparseMatrix<T> const& other) {
// Only perform assignment if source and target are not the same.
if (this != &other) {
rowCount = other.rowCount;
columnCount = other.columnCount;
entryCount = other.entryCount;
columnsAndValues = other.columnsAndValues;
rowIndications = other.rowIndications;
}
return *this;
}
template<typename T>
SparseMatrix<T>& SparseMatrix<T>::operator=(SparseMatrix<T>&& other) {
// Only perform assignment if source and target are not the same.
if (this != &other) {
rowCount = other.rowCount;
columnCount = other.columnCount;
entryCount = other.entryCount;
columnsAndValues = std::move(other.columnsAndValues);
rowIndications = std::move(other.rowIndications);
}
return *this;
}
template<typename T>
bool SparseMatrix<T>::operator==(SparseMatrix<T> const& other) const {
if (this == &other) {
return true;
}
bool equalityResult = true;
equalityResult &= rowCount == other.rowCount;
equalityResult &= columnCount == other.columnCount;
// For the actual contents, we need to do a little bit more work, because we want to ignore elements that
// are set to zero, please they may be represented implicitly in the other matrix.
for (uint_fast64_t row = 0; row < this->getRowCount(); ++row) {
for (const_iterator it1 = this->begin(row), ite1 = this->end(row), it2 = other.begin(row), ite2 = other.end(row); it1 != ite1 && it2 != ite2; ++it1, ++it2) {
// Skip over all zero entries in both matrices.
while (it1 != ite1 && it1->second == storm::utility::constantZero<T>()) {
++it1;
}
while (it2 != ite2 && it2->second == storm::utility::constantZero<T>()) {
++it2;
}
if ((it1 == ite1) || (it2 == ite2)) {
equalityResult = (it1 == ite1) ^ (it2 == ite2);
break;
} else {
if (it1->first != it2->first || it1->second != it2->second) {
equalityResult = false;
break;
}
}
}
}
return equalityResult;
}
template<typename T>
uint_fast64_t SparseMatrix<T>::getRowCount() const {
return rowCount;
}
template<typename T>
uint_fast64_t SparseMatrix<T>::getColumnCount() const {
return columnCount;
}
template<typename T>
uint_fast64_t SparseMatrix<T>::getEntryCount() const {
return entryCount;
}
template<typename T>
void SparseMatrix<T>::makeRowsAbsorbing(storm::storage::BitVector const& rows) {
for (auto row : rows) {
makeRowAbsorbing(row, row);
}
}
template<typename T>
void SparseMatrix<T>::makeRowsAbsorbing(storm::storage::BitVector const& rowGroupConstraint, std::vector<uint_fast64_t> const& rowGroupIndices) {
for (auto rowGroup : rowGroupConstraint) {
for (uint_fast64_t row = rowGroupIndices[rowGroup]; row < rowGroupIndices[rowGroup + 1]; ++row) {
makeRowAbsorbing(row, rowGroup);
}
}
}
template<typename T>
void SparseMatrix<T>::makeRowAbsorbing(uint_fast64_t row, uint_fast64_t column) {
if (row > rowCount) {
throw storm::exceptions::OutOfRangeException() << "Illegal call to SparseMatrix::makeRowAbsorbing: access to row " << row << " is out of bounds.";
}
iterator columnValuePtr = this->begin(row);
iterator columnValuePtrEnd = this->end(row);
// If the row has no elements in it, we cannot make it absorbing, because we would need to move all elements
// in the vector of nonzeros otherwise.
if (columnValuePtr >= columnValuePtrEnd) {
throw storm::exceptions::InvalidStateException() << "Illegal call to SparseMatrix::makeRowAbsorbing: cannot make row " << row << " absorbing, but there is no entry in this row.";
}
// If there is at least one entry in this row, we can just set it to one, modify its column value to the
// one given by the parameter and set all subsequent elements of this row to zero.
columnValuePtr->first = column;
columnValuePtr->second = storm::utility::constantOne<T>();
++columnValuePtr;
for (; columnValuePtr != columnValuePtrEnd; ++columnValuePtr) {
columnValuePtr->first = 0;
columnValuePtr->second = storm::utility::constantZero<T>();
}
}
template<typename T>
T SparseMatrix<T>::getConstrainedRowSum(uint_fast64_t row, storm::storage::BitVector const& constraint) const {
T result(0);
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (constraint.get(it->first)) {
result += it->second;
}
}
return result;
}
template<typename T>
std::vector<T> SparseMatrix<T>::getConstrainedRowSumVector(storm::storage::BitVector const& rowConstraint, storm::storage::BitVector const& columnConstraint) const {
std::vector<T> result(rowConstraint.getNumberOfSetBits());
uint_fast64_t currentRowCount = 0;
for (auto row : rowConstraint) {
result[currentRowCount++] = getConstrainedRowSum(row, columnConstraint);
}
return result;
}
template<typename T>
std::vector<T> SparseMatrix<T>::getConstrainedRowSumVector(storm::storage::BitVector const& rowGroupConstraint, std::vector<uint_fast64_t> const& rowGroupIndices, storm::storage::BitVector const& columnConstraint) const {
std::vector<T> result;
result.reserve(rowGroupConstraint.getNumberOfSetBits());
for (auto rowGroup : rowGroupConstraint) {
for (uint_fast64_t row = rowGroupIndices[rowGroup]; row < rowGroupIndices[rowGroup + 1]; ++row) {
result.push_back(getConstrainedRowSum(row, columnConstraint));
}
}
return result;
}
template<typename T>
SparseMatrix<T> SparseMatrix<T>::getSubmatrix(storm::storage::BitVector const& constraint) const {
// Create a fake row grouping to reduce this to a call to a more general method.
std::vector<uint_fast64_t> rowGroupIndices(rowCount + 1);
uint_fast64_t i = 0;
for (std::vector<uint_fast64_t>::iterator it = rowGroupIndices.begin(); it != rowGroupIndices.end(); ++it, ++i) {
*it = i;
}
return getSubmatrix(constraint, constraint, rowGroupIndices);
}
template<typename T>
SparseMatrix<T> SparseMatrix<T>::getSubmatrix(storm::storage::BitVector const& rowGroupConstraint, std::vector<uint_fast64_t> const& rowGroupIndices, bool insertDiagonalEntries) const {
return getSubmatrix(rowGroupConstraint, rowGroupConstraint, rowGroupIndices, insertDiagonalEntries);
}
template<typename T>
SparseMatrix<T> SparseMatrix<T>::getSubmatrix(storm::storage::BitVector const& rowGroupConstraint, storm::storage::BitVector const& columnConstraint, std::vector<uint_fast64_t> const& rowGroupIndices, bool insertDiagonalEntries) const {
// First, we need to determine the number of entries and the number of rows of the submatrix.
uint_fast64_t subEntries = 0;
uint_fast64_t subRows = 0;
for (auto index : rowGroupConstraint) {
subRows += rowGroupIndices[index + 1] - rowGroupIndices[index];
for (uint_fast64_t i = rowGroupIndices[index]; i < rowGroupIndices[index + 1]; ++i) {
bool foundDiagonalElement = false;
for (const_iterator it = this->begin(i), ite = this->end(i); it != ite; ++it) {
if (columnConstraint.get(it->first)) {
++subEntries;
if (index == it->first) {
foundDiagonalElement = true;
}
}
}
// If requested, we need to reserve one entry more for inserting the diagonal zero entry.
if (insertDiagonalEntries && !foundDiagonalElement) {
++subEntries;
}
}
}
// Create and initialize resulting matrix.
SparseMatrixBuilder<T> matrixBuilder(subRows, columnConstraint.getNumberOfSetBits(), subEntries);
// Create a temporary vector that stores for each index whose bit is set to true the number of bits that
// were set before that particular index.
std::vector<uint_fast64_t> bitsSetBeforeIndex;
bitsSetBeforeIndex.reserve(columnCount);
// Compute the information to fill this vector.
uint_fast64_t lastIndex = 0;
uint_fast64_t currentNumberOfSetBits = 0;
// If we are requested to add missing diagonal entries, we need to make sure the corresponding rows are also
// taken.
storm::storage::BitVector columnBitCountConstraint = columnConstraint;
if (insertDiagonalEntries) {
columnBitCountConstraint |= rowGroupConstraint;
}
for (auto index : columnBitCountConstraint) {
while (lastIndex <= index) {
bitsSetBeforeIndex.push_back(currentNumberOfSetBits);
++lastIndex;
}
++currentNumberOfSetBits;
}
// Copy over selected entries.
uint_fast64_t rowCount = 0;
for (auto index : rowGroupConstraint) {
for (uint_fast64_t i = rowGroupIndices[index]; i < rowGroupIndices[index + 1]; ++i) {
bool insertedDiagonalElement = false;
for (const_iterator it = this->begin(i), ite = this->end(i); it != ite; ++it) {
if (columnConstraint.get(it->first)) {
if (index == it->first) {
insertedDiagonalElement = true;
} else if (insertDiagonalEntries && !insertedDiagonalElement && it->first > index) {
matrixBuilder.addNextValue(rowCount, bitsSetBeforeIndex[index], storm::utility::constantZero<T>());
insertedDiagonalElement = true;
}
matrixBuilder.addNextValue(rowCount, bitsSetBeforeIndex[it->first], it->second);
}
}
if (insertDiagonalEntries && !insertedDiagonalElement) {
matrixBuilder.addNextValue(rowCount, bitsSetBeforeIndex[index], storm::utility::constantZero<T>());
}
++rowCount;
}
}
return matrixBuilder.build();
}
template<typename T>
SparseMatrix<T> SparseMatrix<T>::getSubmatrix(std::vector<uint_fast64_t> const& rowGroupToRowIndexMapping, std::vector<uint_fast64_t> const& rowGroupIndices, bool insertDiagonalEntries) const {
// First, we need to count how many non-zero entries the resulting matrix will have and reserve space for
// diagonal entries if requested.
uint_fast64_t subEntries = 0;
for (uint_fast64_t rowGroupIndex = 0, rowGroupIndexEnd = rowGroupToRowIndexMapping.size(); rowGroupIndex < rowGroupIndexEnd; ++rowGroupIndex) {
// Determine which row we need to select from the current row group.
uint_fast64_t rowToCopy = rowGroupIndices[rowGroupIndex] + rowGroupToRowIndexMapping[rowGroupIndex];
// Iterate through that row and count the number of slots we have to reserve for copying.
bool foundDiagonalElement = false;
for (const_iterator it = this->begin(rowToCopy), ite = this->end(rowToCopy); it != ite; ++it) {
if (it->first == rowGroupIndex) {
foundDiagonalElement = true;
}
++subEntries;
}
if (insertDiagonalEntries && !foundDiagonalElement) {
++subEntries;
}
}
// Now create the matrix to be returned with the appropriate size.
SparseMatrixBuilder<T> matrixBuilder(rowGroupIndices.size() - 1, columnCount, subEntries);
// Copy over the selected lines from the source matrix.
for (uint_fast64_t rowGroupIndex = 0, rowGroupIndexEnd = rowGroupToRowIndexMapping.size(); rowGroupIndex < rowGroupIndexEnd; ++rowGroupIndex) {
// Determine which row we need to select from the current row group.
uint_fast64_t rowToCopy = rowGroupIndices[rowGroupIndex] + rowGroupToRowIndexMapping[rowGroupIndex];
// Iterate through that row and copy the entries. This also inserts a zero element on the diagonal if
// there is no entry yet.
bool insertedDiagonalElement = false;
for (const_iterator it = this->begin(rowToCopy), ite = this->end(rowToCopy); it != ite; ++it) {
if (it->first == rowGroupIndex) {
insertedDiagonalElement = true;
} else if (insertDiagonalEntries && !insertedDiagonalElement && it->first > rowGroupIndex) {
matrixBuilder.addNextValue(rowGroupIndex, rowGroupIndex, storm::utility::constantZero<T>());
insertedDiagonalElement = true;
}
matrixBuilder.addNextValue(rowGroupIndex, it->first, it->second);
}
if (insertDiagonalEntries && !insertedDiagonalElement) {
matrixBuilder.addNextValue(rowGroupIndex, rowGroupIndex, storm::utility::constantZero<T>());
}
}
// Finalize created matrix and return result.
return matrixBuilder.build();
}
template <typename T>
SparseMatrix<T> SparseMatrix<T>::transpose() const {
uint_fast64_t rowCount = this->columnCount;
uint_fast64_t columnCount = this->rowCount;
uint_fast64_t entryCount = this->entryCount;
std::vector<uint_fast64_t> rowIndications(rowCount + 1);
std::vector<std::pair<uint_fast64_t, T>> columnsAndValues(entryCount);
// First, we need to count how many entries each column has.
for (uint_fast64_t row = 0; row < this->rowCount; ++row) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->second > 0) {
++rowIndications[it->first + 1];
}
}
}
// Now compute the accumulated offsets.
for (uint_fast64_t i = 1; i < rowCount + 1; ++i) {
rowIndications[i] = rowIndications[i - 1] + rowIndications[i];
}
// Create an array that stores the index for the next value to be added for
// each row in the transposed matrix. Initially this corresponds to the previously
// computed accumulated offsets.
std::vector<uint_fast64_t> nextIndices = rowIndications;
// Now we are ready to actually fill in the values of the transposed matrix.
for (uint_fast64_t row = 0; row < this->rowCount; ++row) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->second > 0) {
columnsAndValues[nextIndices[it->first]] = std::make_pair(row, it->second);
nextIndices[it->first]++;
}
}
}
storm::storage::SparseMatrix<T> transposedMatrix(columnCount, std::move(rowIndications), std::move(columnsAndValues));
return transposedMatrix;
}
template<typename T>
void SparseMatrix<T>::convertToEquationSystem() {
invertDiagonal();
negateAllNonDiagonalEntries();
}
template<typename T>
void SparseMatrix<T>::invertDiagonal() {
// Check if the matrix is square, because only then it makes sense to perform this
// transformation.
if (this->getRowCount() != this->getColumnCount()) {
throw storm::exceptions::InvalidArgumentException() << "SparseMatrix::invertDiagonal requires the Matrix to be square!";
}
// Now iterate over all rows and set the diagonal elements to the inverted value.
// If there is a row without the diagonal element, an exception is thrown.
T one = storm::utility::constantOne<T>();
bool foundDiagonalElement = false;
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first == row) {
it->second = one - it->second;
foundDiagonalElement = true;
}
}
// Throw an exception if a row did not have an element on the diagonal.
if (!foundDiagonalElement) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::invertDiagonal: matrix is missing diagonal entries.";
}
}
}
template<typename T>
void SparseMatrix<T>::negateAllNonDiagonalEntries() {
// Check if the matrix is square, because only then it makes sense to perform this transformation.
if (this->getRowCount() != this->getColumnCount()) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::invertDiagonal: matrix is non-square.";
}
// Iterate over all rows and negate all the elements that are not on the diagonal.
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first != row) {
it->second = -it->second;
}
}
}
}
template<typename T>
void SparseMatrix<T>::deleteDiagonalEntries() {
// Check if the matrix is square, because only then it makes sense to perform this transformation.
if (this->getRowCount() != this->getColumnCount()) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::deleteDiagonalEntries: matrix is non-square.";
}
// Iterate over all rows and negate all the elements that are not on the diagonal.
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first == row) {
it->second = storm::utility::constantZero<T>();
}
}
}
}
template<typename T>
typename std::pair<storm::storage::SparseMatrix<T>, storm::storage::SparseMatrix<T>> SparseMatrix<T>::getJacobiDecomposition() const {
if (rowCount != columnCount) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::invertDiagonal: matrix is non-square.";
}
storm::storage::SparseMatrix<T> resultLU(*this);
resultLU.deleteDiagonalEntries();
SparseMatrixBuilder<T> dInvBuilder(rowCount, columnCount, rowCount);
// Copy entries to the appropriate matrices.
for (uint_fast64_t rowNumber = 0; rowNumber < rowCount; ++rowNumber) {
// Because the matrix may have several entries on the diagonal, we need to sum them before we are able
// to invert the entry.
T diagonalValue = storm::utility::constantZero<T>();
for (const_iterator it = this->begin(rowNumber), ite = this->end(rowNumber); it != ite; ++it) {
if (it->first == rowNumber) {
diagonalValue += it->second;
} else if (it->first > rowNumber) {
break;
}
}
dInvBuilder.addNextValue(rowNumber, rowNumber, storm::utility::constantOne<T>() / diagonalValue);
}
return std::make_pair(std::move(resultLU), dInvBuilder.build());
}
template<typename T>
std::vector<T> SparseMatrix<T>::getPointwiseProductRowSumVector(storm::storage::SparseMatrix<T> const& otherMatrix) const {
std::vector<T> result(rowCount, storm::utility::constantZero<T>());
// Iterate over all elements of the current matrix and either continue with the next element in case the
// given matrix does not have a non-zero element at this column position, or multiply the two entries and
// add the result to the corresponding position in the vector.
for (uint_fast64_t row = 0; row < rowCount && row < otherMatrix.rowCount; ++row) {
for (const_iterator it1 = this->begin(row), ite1 = this->end(row), it2 = otherMatrix.begin(row), ite2 = otherMatrix.end(row); it1 != ite1 && it2 != ite2; ++it1) {
if (it1->first < it2->first) {
continue;
} else {
// If the precondition of this method (i.e. that the given matrix is a submatrix
// of the current one) was fulfilled, we know now that the two elements are in
// the same column, so we can multiply and add them to the row sum vector.
result[row] += it2->second * it1->second;
++it2;
}
}
}
return result;
}
template<typename T>
void SparseMatrix<T>::multiplyWithVector(std::vector<T> const& vector, std::vector<T>& result) const {
#ifdef STORM_HAVE_INTELTBB
tbb::parallel_for(tbb::blocked_range<uint_fast64_t>(0, result.size(), 10),
[&] (tbb::blocked_range<uint_fast64_t> const& range) {
uint_fast64_t startRow = range.begin();
uint_fast64_t endRow = range.end();
const_iterator it = this->begin(startRow);
const_iterator ite;
typename std::vector<uint_fast64_t>::const_iterator rowIterator = this->rowIndications.begin() + startRow;
typename std::vector<uint_fast64_t>::const_iterator rowIteratorEnd = this->rowIndications.begin() + endRow;
typename std::vector<T>::iterator resultIterator = result.begin() + startRow;
typename std::vector<T>::iterator resultIteratorEnd = result.begin() + endRow;
for (; resultIterator != resultIteratorEnd; ++rowIterator, ++resultIterator) {
*resultIterator = storm::utility::constantZero<T>();
for (ite = this->begin() + *(rowIterator + 1); it != ite; ++it) {
*resultIterator += it->second * vector[it->first];
}
}
});
#else
const_iterator it = this->begin();
const_iterator ite;
typename std::vector<uint_fast64_t>::const_iterator rowIterator = rowIndications.begin();
typename std::vector<uint_fast64_t>::const_iterator rowIteratorEnd = rowIndications.end();
typename std::vector<T>::iterator resultIterator = result.begin();
typename std::vector<T>::iterator resultIteratorEnd = result.end();
for (; resultIterator != resultIteratorEnd; ++rowIterator, ++resultIterator) {
*resultIterator = storm::utility::constantZero<T>();
for (ite = this->begin() + *(rowIterator + 1); it != ite; ++it) {
*resultIterator += it->second * vector[it->first];
}
}
#endif
}
template<typename T>
uint_fast64_t SparseMatrix<T>::getSizeInMemory() const {
uint_fast64_t size = sizeof(*this);
// Add size of columns and values.
size += sizeof(std::pair<uint_fast64_t, T>) * columnsAndValues.capacity();
// Add row_indications size.
size += sizeof(uint_fast64_t) * rowIndications.capacity();
return size;
}
template<typename T>
typename SparseMatrix<T>::const_rows SparseMatrix<T>::getRows(uint_fast64_t startRow, uint_fast64_t endRow) const {
return const_rows(this->columnsAndValues.begin() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
}
template<typename T>
typename SparseMatrix<T>::rows SparseMatrix<T>::getRows(uint_fast64_t startRow, uint_fast64_t endRow) {
return rows(this->columnsAndValues.begin() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
}
template<typename T>
typename SparseMatrix<T>::const_rows SparseMatrix<T>::getRow(uint_fast64_t row) const {
return getRows(row, row);
}
template<typename T>
typename SparseMatrix<T>::rows SparseMatrix<T>::getRow(uint_fast64_t row) {
return getRows(row, row);
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::begin(uint_fast64_t row) const {
return this->columnsAndValues.begin() + this->rowIndications[row];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::begin(uint_fast64_t row) {
return this->columnsAndValues.begin() + this->rowIndications[row];
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::end(uint_fast64_t row) const {
return this->columnsAndValues.begin() + this->rowIndications[row + 1];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::end(uint_fast64_t row) {
return this->columnsAndValues.begin() + this->rowIndications[row + 1];
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::end() const {
return this->columnsAndValues.begin() + this->rowIndications[rowCount];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::end() {
return this->columnsAndValues.begin() + this->rowIndications[rowCount];
}
template<typename T>
T SparseMatrix<T>::getRowSum(uint_fast64_t row) const {
T sum = storm::utility::constantZero<T>();
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
sum += it->second;
}
return sum;
}
template<typename T>
bool SparseMatrix<T>::isSubmatrixOf(SparseMatrix<T> const& matrix) const {
// Check for matching sizes.
if (this->getRowCount() != matrix.getRowCount()) return false;
if (this->getColumnCount() != matrix.getColumnCount()) return false;
// Check the subset property for all rows individually.
for (uint_fast64_t row = 0; row < this->getRowCount(); ++row) {
for (const_iterator it1 = this->begin(row), ite1 = this->end(row), it2 = matrix.begin(row), ite2 = matrix.end(row); it1 != ite1; ++it1) {
// Skip over all entries of the other matrix that are before the current entry in the current matrix.
while (it2 != ite2 && it2->first < it1->first) {
++it2;
}
if (it2 == ite2 || it1->first != it2->first) {
return false;
}
}
}
return true;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, SparseMatrix<T> const& matrix) {
// Print column numbers in header.
out << "\t\t";
for (uint_fast64_t i = 0; i < matrix.columnCount; ++i) {
out << i << "\t";
}
out << std::endl;
// Iterate over all rows.
for (uint_fast64_t i = 0; i < matrix.rowCount; ++i) {
uint_fast64_t nextIndex = matrix.rowIndications[i];
// Print the actual row.
out << i << "\t(\t";
uint_fast64_t currentRealIndex = 0;
while (currentRealIndex < matrix.columnCount) {
if (nextIndex < matrix.rowIndications[i + 1] && currentRealIndex == matrix.columnsAndValues[nextIndex].first) {
out << matrix.columnsAndValues[nextIndex].second << "\t";
++nextIndex;
} else {
out << "0\t";
}
++currentRealIndex;
}
out << "\t)\t" << i << std::endl;
}
// Print column numbers in footer.
out << "\t\t";
for (uint_fast64_t i = 0; i < matrix.columnCount; ++i) {
out << i << "\t";
}
out << std::endl;
return out;
}
template<typename T>
std::size_t SparseMatrix<T>::hash() const {
std::size_t result = 0;
boost::hash_combine(result, rowCount);
boost::hash_combine(result, columnCount);
boost::hash_combine(result, entryCount);
boost::hash_combine(result, boost::hash_range(columnsAndValues.begin(), columnsAndValues.end()));
boost::hash_combine(result, boost::hash_range(rowIndications.begin(), rowIndications.end()));
return result;
}
// Explicitly instantiate the builder and the matrix.
template class SparseMatrixBuilder<double>;
template class SparseMatrix<double>;
template std::ostream& operator<<(std::ostream& out, SparseMatrix<double> const& matrix);
template class SparseMatrixBuilder<int>;
template class SparseMatrix<int>;
template std::ostream& operator<<(std::ostream& out, SparseMatrix<int> const& matrix);
} // namespace storage
} // namespace storm