286 lines
9.6 KiB
286 lines
9.6 KiB
#include <cuda.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
#include <chrono>
|
|
#include <iostream>
|
|
|
|
__global__ void cuda_kernel_basicAdd(int a, int b, int *c) {
|
|
*c = a + b;
|
|
}
|
|
|
|
__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
|
|
// Fused Multiply Add:
|
|
// A * B + C => D
|
|
|
|
/*
|
|
*Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
|
|
*ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
|
|
*Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
|
|
*des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
|
|
*Threads, der die Funktion gerade ausführt.
|
|
*/
|
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
if (i < N) {
|
|
D[i] = A[i] * B[i] + C[i];
|
|
}
|
|
}
|
|
|
|
__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
|
|
// Fused Multiply Add:
|
|
// A * B + C => D
|
|
|
|
// Layout:
|
|
// A B C D A B C D A B C D
|
|
|
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
if ((i*M) < N) {
|
|
for (int j = i*M; j < i*M + M; ++j) {
|
|
A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" int cuda_basicAdd(int a, int b) {
|
|
int c = 0;
|
|
int *dev_c;
|
|
cudaMalloc((void**)&dev_c, sizeof(int));
|
|
cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
|
|
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
|
|
//printf("%d + %d + 42 is %d\n", a, b, c);
|
|
cudaFree(dev_c);
|
|
return c;
|
|
}
|
|
|
|
void cpp_cuda_bandwidthTest(int entryCount, int N) {
|
|
// Size of the Arrays
|
|
size_t arraySize = entryCount * sizeof(int);
|
|
|
|
int* deviceIntArray;
|
|
int* hostIntArray = new int[arraySize];
|
|
|
|
// Allocate space on the device
|
|
auto start_time = std::chrono::high_resolution_clock::now();
|
|
for (int i = 0; i < N; ++i) {
|
|
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
|
|
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
|
|
delete[] hostIntArray;
|
|
return;
|
|
}
|
|
// Free memory on device
|
|
if (cudaFree(deviceIntArray) != cudaSuccess) {
|
|
std::cout << "Error in cudaFree!" << std::endl;
|
|
delete[] hostIntArray;
|
|
return;
|
|
}
|
|
}
|
|
auto end_time = std::chrono::high_resolution_clock::now();
|
|
auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
|
|
double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
|
|
std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
|
|
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
|
|
|
|
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
|
|
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
|
|
delete[] hostIntArray;
|
|
return;
|
|
}
|
|
|
|
// Prepare data
|
|
for (int i = 0; i < N; ++i) {
|
|
hostIntArray[i] = i * 333 + 123;
|
|
}
|
|
|
|
// Copy data TO device
|
|
start_time = std::chrono::high_resolution_clock::now();
|
|
for (int i = 0; i < N; ++i) {
|
|
if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
|
|
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
|
|
// Free memory on device
|
|
if (cudaFree(deviceIntArray) != cudaSuccess) {
|
|
std::cout << "Error in cudaFree!" << std::endl;
|
|
}
|
|
delete[] hostIntArray;
|
|
return;
|
|
}
|
|
}
|
|
end_time = std::chrono::high_resolution_clock::now();
|
|
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
|
|
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
|
|
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
|
|
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
|
|
|
|
// Copy data FROM device
|
|
start_time = std::chrono::high_resolution_clock::now();
|
|
for (int i = 0; i < N; ++i) {
|
|
if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
|
|
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
|
|
// Free memory on device
|
|
if (cudaFree(deviceIntArray) != cudaSuccess) {
|
|
std::cout << "Error in cudaFree!" << std::endl;
|
|
}
|
|
delete[] hostIntArray;
|
|
return;
|
|
}
|
|
}
|
|
end_time = std::chrono::high_resolution_clock::now();
|
|
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
|
|
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
|
|
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
|
|
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
|
|
|
|
// Free memory on device
|
|
if (cudaFree(deviceIntArray) != cudaSuccess) {
|
|
std::cout << "Error in cudaFree!" << std::endl;
|
|
}
|
|
delete[] hostIntArray;
|
|
}
|
|
|
|
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
|
|
// Size of the Arrays
|
|
size_t arraySize = N * sizeof(int);
|
|
|
|
int* deviceIntArrayA;
|
|
int* deviceIntArrayB;
|
|
int* deviceIntArrayC;
|
|
int* deviceIntArrayD;
|
|
|
|
// Allocate space on the device
|
|
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
|
|
printf("Error in cudaMalloc1!\n");
|
|
return;
|
|
}
|
|
if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
|
|
printf("Error in cudaMalloc2!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
return;
|
|
}
|
|
if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
|
|
printf("Error in cudaMalloc3!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
return;
|
|
}
|
|
if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
|
|
printf("Error in cudaMalloc4!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
return;
|
|
}
|
|
|
|
// Copy data TO device
|
|
if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
cudaFree(deviceIntArrayD);
|
|
return;
|
|
}
|
|
if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
cudaFree(deviceIntArrayD);
|
|
return;
|
|
}
|
|
if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
cudaFree(deviceIntArrayD);
|
|
return;
|
|
}
|
|
|
|
// Festlegung der Threads pro Block
|
|
int threadsPerBlock = 512;
|
|
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
|
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
// Run kernel
|
|
cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
|
|
|
|
// Copy data FROM device
|
|
if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
cudaFree(deviceIntArrayD);
|
|
return;
|
|
}
|
|
|
|
// Free memory on device
|
|
cudaFree(deviceIntArrayA);
|
|
cudaFree(deviceIntArrayB);
|
|
cudaFree(deviceIntArrayC);
|
|
cudaFree(deviceIntArrayD);
|
|
}
|
|
|
|
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
|
|
// Size of the Arrays
|
|
size_t arraySize = N * sizeof(int) * 4;
|
|
|
|
int* deviceIntArrayA;
|
|
|
|
// Allocate space on the device
|
|
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
|
|
printf("Error in cudaMalloc1!\n");
|
|
return;
|
|
}
|
|
|
|
#define ONFAILFREE0() do { } while(0)
|
|
#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
|
|
#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
|
|
#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
|
|
#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
|
|
#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
|
|
|
|
// Copy data TO device
|
|
|
|
CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
|
|
|
|
/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
return;
|
|
}*/
|
|
|
|
// Festlegung der Threads pro Block
|
|
int threadsPerBlock = 512;
|
|
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
|
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
// Run kernel
|
|
cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
|
|
|
|
// Copy data FROM device
|
|
if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
|
|
printf("Error in cudaMemcpy!\n");
|
|
cudaFree(deviceIntArrayA);
|
|
return;
|
|
}
|
|
|
|
// Free memory on device
|
|
if (cudaFree(deviceIntArrayA) != cudaSuccess) {
|
|
printf("Error in cudaFree!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
|
|
for (int i = 0; i < N; ++i) {
|
|
D[i] = A[i] * B[i] + C[i];
|
|
}
|
|
}
|
|
|
|
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
|
|
for (int i = 0; i < N; i += 4) {
|
|
A[i+3] = A[i] * A[i+1] + A[i+2];
|
|
}
|
|
}
|