You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

4023 lines
126 KiB

#ifndef spp_dlalloc__h_
#define spp_dlalloc__h_
/* This is a C++ allocator created from Doug Lea's dlmalloc
(Version 2.8.6 Wed Aug 29 06:57:58 2012)
see: http://g.oswego.edu/dl/html/malloc.html
*/
#include <sparsepp/spp_utils.h>
#include <sparsepp/spp_smartptr.h>
#ifndef SPP_FORCEINLINE
#if defined(__GNUC__)
#define SPP_FORCEINLINE __inline __attribute__ ((always_inline))
#elif defined(_MSC_VER)
#define SPP_FORCEINLINE __forceinline
#else
#define SPP_FORCEINLINE inline
#endif
#endif
#ifndef SPP_IMPL
#define SPP_IMPL SPP_FORCEINLINE
#endif
#ifndef SPP_API
#define SPP_API static
#endif
namespace spp
{
// ---------------------- allocator internal API -----------------------
typedef void* mspace;
/*
create_mspace creates and returns a new independent space with the
given initial capacity, or, if 0, the default granularity size. It
returns null if there is no system memory available to create the
space. If argument locked is non-zero, the space uses a separate
lock to control access. The capacity of the space will grow
dynamically as needed to service mspace_malloc requests. You can
control the sizes of incremental increases of this space by
compiling with a different SPP_DEFAULT_GRANULARITY or dynamically
setting with mallopt(M_GRANULARITY, value).
*/
SPP_API mspace create_mspace(size_t capacity, int locked);
SPP_API size_t destroy_mspace(mspace msp);
SPP_API void* mspace_malloc(mspace msp, size_t bytes);
SPP_API void mspace_free(mspace msp, void* mem);
SPP_API void* mspace_realloc(mspace msp, void* mem, size_t newsize);
#if 0
SPP_API mspace create_mspace_with_base(void* base, size_t capacity, int locked);
SPP_API int mspace_track_large_chunks(mspace msp, int enable);
SPP_API void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
SPP_API void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
SPP_API void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]);
SPP_API void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]);
SPP_API size_t mspace_footprint(mspace msp);
SPP_API size_t mspace_max_footprint(mspace msp);
SPP_API size_t mspace_usable_size(const void* mem);
SPP_API int mspace_trim(mspace msp, size_t pad);
SPP_API int mspace_mallopt(int, int);
#endif
// -----------------------------------------------------------
// -----------------------------------------------------------
template<class T>
class spp_allocator
{
public:
typedef T value_type;
typedef T* pointer;
typedef ptrdiff_t difference_type;
typedef const T* const_pointer;
typedef size_t size_type;
spp_allocator() : _space(new MSpace) {}
void swap(spp_allocator &o)
{
std::swap(_space, o._space);
}
pointer allocate(size_t n, const_pointer /* unused */ = 0)
{
pointer res = static_cast<pointer>(mspace_malloc(_space->_sp, n * sizeof(T)));
if (!res)
throw std::bad_alloc();
return res;
}
void deallocate(pointer p, size_t /* unused */)
{
mspace_free(_space->_sp, p);
}
pointer reallocate(pointer p, size_t new_size)
{
pointer res = static_cast<pointer>(mspace_realloc(_space->_sp, p, new_size * sizeof(T)));
if (!res)
throw std::bad_alloc();
return res;
}
size_type max_size() const
{
return static_cast<size_type>(-1) / sizeof(value_type);
}
void construct(pointer p, const value_type& val)
{
new (p) value_type(val);
}
void destroy(pointer p) { p->~value_type(); }
template<class U>
struct rebind
{
// rebind to libc_allocator because we want to use malloc_inspect_all in destructive_iterator
// to reduce peak memory usage (we don't want <group_items> mixed with value_type when
// we traverse the allocated memory).
typedef spp::spp_allocator<U> other;
};
mspace space() const { return _space->_sp; }
// check if we can clear the whole allocator memory at once => works only if the allocator
// is not be shared. If can_clear() returns true, we expect that the next allocator call
// will be clear() - not allocate() or deallocate()
bool can_clear()
{
assert(!_space_to_clear);
_space_to_clear.reset();
_space_to_clear.swap(_space);
if (_space_to_clear->count() == 1)
return true;
else
_space_to_clear.swap(_space);
return false;
}
void clear()
{
assert(!_space && _space_to_clear);
_space_to_clear.reset();
_space = new MSpace;
}
private:
struct MSpace : public spp_rc
{
MSpace() :
_sp(create_mspace(0, 0))
{}
~MSpace()
{
destroy_mspace(_sp);
}
mspace _sp;
};
spp_sptr<MSpace> _space;
spp_sptr<MSpace> _space_to_clear;
};
}
// allocators are "equal" whenever memory allocated with one can be deallocated with the other
template<class T>
inline bool operator==(const spp_::spp_allocator<T> &a, const spp_::spp_allocator<T> &b)
{
return a.space() == b.space();
}
template<class T>
inline bool operator!=(const spp_::spp_allocator<T> &a, const spp_::spp_allocator<T> &b)
{
return !(a == b);
}
namespace std
{
template <class T>
inline void swap(spp_::spp_allocator<T> &a, spp_::spp_allocator<T> &b)
{
a.swap(b);
}
}
#if !defined(SPP_EXCLUDE_IMPLEMENTATION)
#ifndef WIN32
#ifdef _WIN32
#define WIN32 1
#endif
#ifdef _WIN32_WCE
#define SPP_LACKS_FCNTL_H
#define WIN32 1
#endif
#endif
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <tchar.h>
#define SPP_HAVE_MMAP 1
#define SPP_LACKS_UNISTD_H
#define SPP_LACKS_SYS_PARAM_H
#define SPP_LACKS_SYS_MMAN_H
#define SPP_LACKS_STRING_H
#define SPP_LACKS_STRINGS_H
#define SPP_LACKS_SYS_TYPES_H
#define SPP_LACKS_ERRNO_H
#define SPP_LACKS_SCHED_H
#ifndef SPP_MALLOC_FAILURE_ACTION
#define SPP_MALLOC_FAILURE_ACTION
#endif
#ifndef SPP_MMAP_CLEARS
#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
#define SPP_MMAP_CLEARS 0
#else
#define SPP_MMAP_CLEARS 1
#endif
#endif
#endif
#if defined(DARWIN) || defined(_DARWIN)
#define SPP_HAVE_MMAP 1
/* OSX allocators provide 16 byte alignment */
#ifndef SPP_MALLOC_ALIGNMENT
#define SPP_MALLOC_ALIGNMENT ((size_t)16U)
#endif
#endif
#ifndef SPP_LACKS_SYS_TYPES_H
#include <sys/types.h> /* For size_t */
#endif
#ifndef SPP_MALLOC_ALIGNMENT
#define SPP_MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
#endif
/* ------------------- size_t and alignment properties -------------------- */
static const size_t spp_max_size_t = ~(size_t)0;
static const size_t spp_size_t_bitsize = sizeof(size_t) << 3;
static const size_t spp_half_max_size_t = spp_max_size_t / 2U;
static const size_t spp_chunk_align_mask = SPP_MALLOC_ALIGNMENT - 1;
#if defined(SPP_DEBUG) || !defined(NDEBUG)
static bool spp_is_aligned(void *p) { return ((size_t)p & spp_chunk_align_mask) == 0; }
#endif
// the number of bytes to offset an address to align it
static size_t align_offset(void *p)
{
return (((size_t)p & spp_chunk_align_mask) == 0) ? 0 :
((SPP_MALLOC_ALIGNMENT - ((size_t)p & spp_chunk_align_mask)) & spp_chunk_align_mask);
}
#ifndef SPP_FOOTERS
#define SPP_FOOTERS 0
#endif
#ifndef SPP_ABORT
#define SPP_ABORT abort()
#endif
#ifndef SPP_ABORT_ON_ASSERT_FAILURE
#define SPP_ABORT_ON_ASSERT_FAILURE 1
#endif
#ifndef SPP_PROCEED_ON_ERROR
#define SPP_PROCEED_ON_ERROR 0
#endif
#ifndef SPP_INSECURE
#define SPP_INSECURE 0
#endif
#ifndef SPP_MALLOC_INSPECT_ALL
#define SPP_MALLOC_INSPECT_ALL 0
#endif
#ifndef SPP_HAVE_MMAP
#define SPP_HAVE_MMAP 1
#endif
#ifndef SPP_MMAP_CLEARS
#define SPP_MMAP_CLEARS 1
#endif
#ifndef SPP_HAVE_MREMAP
#ifdef linux
#define SPP_HAVE_MREMAP 1
#ifndef _GNU_SOURCE
#define _GNU_SOURCE /* Turns on mremap() definition */
#endif
#else
#define SPP_HAVE_MREMAP 0
#endif
#endif
#ifndef SPP_MALLOC_FAILURE_ACTION
#define SPP_MALLOC_FAILURE_ACTION errno = ENOMEM
#endif
#ifndef SPP_DEFAULT_GRANULARITY
#if defined(WIN32)
#define SPP_DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
#else
#define SPP_DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
#endif
#endif
#ifndef SPP_DEFAULT_TRIM_THRESHOLD
#define SPP_DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
#endif
#ifndef SPP_DEFAULT_MMAP_THRESHOLD
#if SPP_HAVE_MMAP
#define SPP_DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
#else
#define SPP_DEFAULT_MMAP_THRESHOLD spp_max_size_t
#endif
#endif
#ifndef SPP_MAX_RELEASE_CHECK_RATE
#if SPP_HAVE_MMAP
#define SPP_MAX_RELEASE_CHECK_RATE 4095
#else
#define SPP_MAX_RELEASE_CHECK_RATE spp_max_size_t
#endif
#endif
#ifndef SPP_USE_BUILTIN_FFS
#define SPP_USE_BUILTIN_FFS 0
#endif
#ifndef SPP_USE_DEV_RANDOM
#define SPP_USE_DEV_RANDOM 0
#endif
#ifndef SPP_NO_SEGMENT_TRAVERSAL
#define SPP_NO_SEGMENT_TRAVERSAL 0
#endif
/*------------------------------ internal #includes ---------------------- */
#ifdef _MSC_VER
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
#endif
#ifndef SPP_LACKS_ERRNO_H
#include <errno.h> /* for SPP_MALLOC_FAILURE_ACTION */
#endif
#ifdef SPP_DEBUG
#if SPP_ABORT_ON_ASSERT_FAILURE
#undef assert
#define assert(x) if(!(x)) SPP_ABORT
#else
#include <assert.h>
#endif
#else
#ifndef assert
#define assert(x)
#endif
#define SPP_DEBUG 0
#endif
#if !defined(WIN32) && !defined(SPP_LACKS_TIME_H)
#include <time.h> /* for magic initialization */
#endif
#ifndef SPP_LACKS_STDLIB_H
#include <stdlib.h> /* for abort() */
#endif
#ifndef SPP_LACKS_STRING_H
#include <string.h> /* for memset etc */
#endif
#if SPP_USE_BUILTIN_FFS
#ifndef SPP_LACKS_STRINGS_H
#include <strings.h> /* for ffs */
#endif
#endif
#if SPP_HAVE_MMAP
#ifndef SPP_LACKS_SYS_MMAN_H
/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
#if (defined(linux) && !defined(__USE_GNU))
#define __USE_GNU 1
#include <sys/mman.h> /* for mmap */
#undef __USE_GNU
#else
#include <sys/mman.h> /* for mmap */
#endif
#endif
#ifndef SPP_LACKS_FCNTL_H
#include <fcntl.h>
#endif
#endif
#ifndef SPP_LACKS_UNISTD_H
#include <unistd.h> /* for sbrk, sysconf */
#else
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
extern void* sbrk(ptrdiff_t);
#endif
#endif
#include <new>
namespace spp
{
/* Declarations for bit scanning on win32 */
#if defined(_MSC_VER) && _MSC_VER>=1300
#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
}
#define BitScanForward _BitScanForward
#define BitScanReverse _BitScanReverse
#pragma intrinsic(_BitScanForward)
#pragma intrinsic(_BitScanReverse)
#endif /* BitScanForward */
#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
#ifndef WIN32
#ifndef malloc_getpagesize
#ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
#ifndef _SC_PAGE_SIZE
#define _SC_PAGE_SIZE _SC_PAGESIZE
#endif
#endif
#ifdef _SC_PAGE_SIZE
#define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
#else
#if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
extern size_t getpagesize();
#define malloc_getpagesize getpagesize()
#else
#ifdef WIN32 /* use supplied emulation of getpagesize */
#define malloc_getpagesize getpagesize()
#else
#ifndef SPP_LACKS_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef EXEC_PAGESIZE
#define malloc_getpagesize EXEC_PAGESIZE
#else
#ifdef NBPG
#ifndef CLSIZE
#define malloc_getpagesize NBPG
#else
#define malloc_getpagesize (NBPG * CLSIZE)
#endif
#else
#ifdef NBPC
#define malloc_getpagesize NBPC
#else
#ifdef PAGESIZE
#define malloc_getpagesize PAGESIZE
#else /* just guess */
#define malloc_getpagesize ((size_t)4096U)
#endif
#endif
#endif
#endif
#endif
#endif
#endif
#endif
#endif
/* -------------------------- MMAP preliminaries ------------------------- */
/*
If SPP_HAVE_MORECORE or SPP_HAVE_MMAP are false, we just define calls and
checks to fail so compiler optimizer can delete code rather than
using so many "#if"s.
*/
/* MMAP must return mfail on failure */
static void *mfail = (void*)spp_max_size_t;
static char *cmfail = (char*)mfail;
#if SPP_HAVE_MMAP
#ifndef WIN32
#define SPP_MUNMAP_DEFAULT(a, s) munmap((a), (s))
#define SPP_MMAP_PROT (PROT_READ | PROT_WRITE)
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif
#ifdef MAP_ANONYMOUS
#define SPP_MMAP_FLAGS (MAP_PRIVATE | MAP_ANONYMOUS)
#define SPP_MMAP_DEFAULT(s) mmap(0, (s), SPP_MMAP_PROT, SPP_MMAP_FLAGS, -1, 0)
#else /* MAP_ANONYMOUS */
/*
Nearly all versions of mmap support MAP_ANONYMOUS, so the following
is unlikely to be needed, but is supplied just in case.
*/
#define SPP_MMAP_FLAGS (MAP_PRIVATE)
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
void SPP_MMAP_DEFAULT(size_t s)
{
if (dev_zero_fd < 0)
dev_zero_fd = open("/dev/zero", O_RDWR);
mmap(0, s, SPP_MMAP_PROT, SPP_MMAP_FLAGS, dev_zero_fd, 0);
}
#endif /* MAP_ANONYMOUS */
#define SPP_DIRECT_MMAP_DEFAULT(s) SPP_MMAP_DEFAULT(s)
#else /* WIN32 */
/* Win32 MMAP via VirtualAlloc */
static SPP_FORCEINLINE void* win32mmap(size_t size)
{
void* ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
return (ptr != 0) ? ptr : mfail;
}
/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
static SPP_FORCEINLINE void* win32direct_mmap(size_t size)
{
void* ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN,
PAGE_READWRITE);
return (ptr != 0) ? ptr : mfail;
}
/* This function supports releasing coalesed segments */
static SPP_FORCEINLINE int win32munmap(void* ptr, size_t size)
{
MEMORY_BASIC_INFORMATION minfo;
char* cptr = (char*)ptr;
while (size)
{
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
return -1;
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
return -1;
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
return -1;
cptr += minfo.RegionSize;
size -= minfo.RegionSize;
}
return 0;
}
#define SPP_MMAP_DEFAULT(s) win32mmap(s)
#define SPP_MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
#define SPP_DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
#endif /* WIN32 */
#endif /* SPP_HAVE_MMAP */
#if SPP_HAVE_MREMAP
#ifndef WIN32
#define SPP_MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
#endif
#endif
/**
* Define SPP_CALL_MMAP/SPP_CALL_MUNMAP/SPP_CALL_DIRECT_MMAP
*/
#if SPP_HAVE_MMAP
#define USE_MMAP_BIT 1
#ifdef SPP_MMAP
#define SPP_CALL_MMAP(s) SPP_MMAP(s)
#else
#define SPP_CALL_MMAP(s) SPP_MMAP_DEFAULT(s)
#endif
#ifdef SPP_MUNMAP
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP((a), (s))
#else
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP_DEFAULT((a), (s))
#endif
#ifdef SPP_DIRECT_MMAP
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP(s)
#else
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP_DEFAULT(s)
#endif
#else /* SPP_HAVE_MMAP */
#define USE_MMAP_BIT 0
#define SPP_MMAP(s) mfail
#define SPP_MUNMAP(a, s) (-1)
#define SPP_DIRECT_MMAP(s) mfail
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP(s)
#define SPP_CALL_MMAP(s) SPP_MMAP(s)
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP((a), (s))
#endif
/**
* Define SPP_CALL_MREMAP
*/
#if SPP_HAVE_MMAP && SPP_HAVE_MREMAP
#ifdef MREMAP
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
#else
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) SPP_MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
#endif
#else
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) mfail
#endif
/* mstate bit set if continguous morecore disabled or failed */
static const unsigned USE_NONCONTIGUOUS_BIT = 4U;
/* segment bit set in create_mspace_with_base */
static const unsigned EXTERN_BIT = 8U;
/* --------------------------- flags ------------------------ */
static const unsigned PINUSE_BIT = 1;
static const unsigned CINUSE_BIT = 2;
static const unsigned FLAG4_BIT = 4;
static const unsigned INUSE_BITS = (PINUSE_BIT | CINUSE_BIT);
static const unsigned FLAG_BITS = (PINUSE_BIT | CINUSE_BIT | FLAG4_BIT);
/* ------------------- Chunks sizes and alignments ----------------------- */
#if SPP_FOOTERS
static const unsigned CHUNK_OVERHEAD = 2 * sizeof(size_t);
#else
static const unsigned CHUNK_OVERHEAD = sizeof(size_t);
#endif
/* MMapped chunks need a second word of overhead ... */
static const unsigned SPP_MMAP_CHUNK_OVERHEAD = 2 * sizeof(size_t);
/* ... and additional padding for fake next-chunk at foot */
static const unsigned SPP_MMAP_FOOT_PAD = 4 * sizeof(size_t);
// ===============================================================================
struct malloc_chunk_header
{
void set_size_and_pinuse_of_free_chunk(size_t s)
{
_head = s | PINUSE_BIT;
set_foot(s);
}
void set_foot(size_t s)
{
((malloc_chunk_header *)((char*)this + s))->_prev_foot = s;
}
// extraction of fields from head words
bool cinuse() const { return !!(_head & CINUSE_BIT); }
bool pinuse() const { return !!(_head & PINUSE_BIT); }
bool flag4inuse() const { return !!(_head & FLAG4_BIT); }
bool is_inuse() const { return (_head & INUSE_BITS) != PINUSE_BIT; }
bool is_mmapped() const { return (_head & INUSE_BITS) == 0; }
size_t chunksize() const { return _head & ~(FLAG_BITS); }
void clear_pinuse() { _head &= ~PINUSE_BIT; }
void set_flag4() { _head |= FLAG4_BIT; }
void clear_flag4() { _head &= ~FLAG4_BIT; }
// Treat space at ptr +/- offset as a chunk
malloc_chunk_header * chunk_plus_offset(size_t s)
{
return (malloc_chunk_header *)((char*)this + s);
}
malloc_chunk_header * chunk_minus_offset(size_t s)
{
return (malloc_chunk_header *)((char*)this - s);
}
// Ptr to next or previous physical malloc_chunk.
malloc_chunk_header * next_chunk()
{
return (malloc_chunk_header *)((char*)this + (_head & ~FLAG_BITS));
}
malloc_chunk_header * prev_chunk()
{
return (malloc_chunk_header *)((char*)this - (_prev_foot));
}
// extract next chunk's pinuse bit
size_t next_pinuse() { return next_chunk()->_head & PINUSE_BIT; }
size_t _prev_foot; // Size of previous chunk (if free).
size_t _head; // Size and inuse bits.
};
// ===============================================================================
struct malloc_chunk : public malloc_chunk_header
{
// Set size, pinuse bit, foot, and clear next pinuse
void set_free_with_pinuse(size_t s, malloc_chunk* n)
{
n->clear_pinuse();
set_size_and_pinuse_of_free_chunk(s);
}
// Get the internal overhead associated with chunk p
size_t overhead_for() { return is_mmapped() ? SPP_MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD; }
// Return true if malloced space is not necessarily cleared
bool calloc_must_clear()
{
#if SPP_MMAP_CLEARS
return !is_mmapped();
#else
return true;
#endif
}
struct malloc_chunk* _fd; // double links -- used only if free.
struct malloc_chunk* _bk;
};
static const unsigned MCHUNK_SIZE = sizeof(malloc_chunk);
/* The smallest size we can malloc is an aligned minimal chunk */
static const unsigned MIN_CHUNK_SIZE = (MCHUNK_SIZE + spp_chunk_align_mask) & ~spp_chunk_align_mask;
typedef malloc_chunk mchunk;
typedef malloc_chunk* mchunkptr;
typedef malloc_chunk_header *hchunkptr;
typedef malloc_chunk* sbinptr; // The type of bins of chunks
typedef unsigned int bindex_t; // Described below
typedef unsigned int binmap_t; // Described below
typedef unsigned int flag_t; // The type of various bit flag sets
// conversion from malloc headers to user pointers, and back
static SPP_FORCEINLINE void *chunk2mem(const void *p) { return (void *)((char *)p + 2 * sizeof(size_t)); }
static SPP_FORCEINLINE mchunkptr mem2chunk(const void *mem) { return (mchunkptr)((char *)mem - 2 * sizeof(size_t)); }
// chunk associated with aligned address A
static SPP_FORCEINLINE mchunkptr align_as_chunk(char *A) { return (mchunkptr)(A + align_offset(chunk2mem(A))); }
// Bounds on request (not chunk) sizes.
static const unsigned MAX_REQUEST = (-MIN_CHUNK_SIZE) << 2;
static const unsigned MIN_REQUEST = MIN_CHUNK_SIZE - CHUNK_OVERHEAD - 1;
// pad request bytes into a usable size
static SPP_FORCEINLINE size_t pad_request(size_t req)
{
return (req + CHUNK_OVERHEAD + spp_chunk_align_mask) & ~spp_chunk_align_mask;
}
// pad request, checking for minimum (but not maximum)
static SPP_FORCEINLINE size_t request2size(size_t req)
{
return req < MIN_REQUEST ? MIN_CHUNK_SIZE : pad_request(req);
}
/* ------------------ Operations on head and foot fields ----------------- */
/*
The head field of a chunk is or'ed with PINUSE_BIT when previous
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
use, unless mmapped, in which case both bits are cleared.
FLAG4_BIT is not used by this malloc, but might be useful in extensions.
*/
// Head value for fenceposts
static const unsigned FENCEPOST_HEAD = INUSE_BITS | sizeof(size_t);
/* ---------------------- Overlaid data structures ----------------------- */
/*
When chunks are not in use, they are treated as nodes of either
lists or trees.
"Small" chunks are stored in circular doubly-linked lists, and look
like this:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space (may be 0 bytes long) .
. .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Larger chunks are kept in a form of bitwise digital trees (aka
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
free chunks greater than 256 bytes, their size doesn't impose any
constraints on user chunk sizes. Each node looks like:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to left child (child[0]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to right child (child[1]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to parent |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| bin index of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
of the same size are arranged in a circularly-linked list, with only
the oldest chunk (the next to be used, in our FIFO ordering)
actually in the tree. (Tree members are distinguished by a non-null
parent pointer.) If a chunk with the same size an an existing node
is inserted, it is linked off the existing node using pointers that
work in the same way as fd/bk pointers of small chunks.
Each tree contains a power of 2 sized range of chunk sizes (the
smallest is 0x100 <= x < 0x180), which is is divided in half at each
tree level, with the chunks in the smaller half of the range (0x100
<= x < 0x140 for the top nose) in the left subtree and the larger
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
done by inspecting individual bits.
Using these rules, each node's left subtree contains all smaller
sizes than its right subtree. However, the node at the root of each
subtree has no particular ordering relationship to either. (The
dividing line between the subtree sizes is based on trie relation.)
If we remove the last chunk of a given size from the interior of the
tree, we need to replace it with a leaf node. The tree ordering
rules permit a node to be replaced by any leaf below it.
The smallest chunk in a tree (a common operation in a best-fit
allocator) can be found by walking a path to the leftmost leaf in
the tree. Unlike a usual binary tree, where we follow left child
pointers until we reach a null, here we follow the right child
pointer any time the left one is null, until we reach a leaf with
both child pointers null. The smallest chunk in the tree will be
somewhere along that path.
The worst case number of steps to add, find, or remove a node is
bounded by the number of bits differentiating chunks within
bins. Under current bin calculations, this ranges from 6 up to 21
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
is of course much better.
*/
// ===============================================================================
struct malloc_tree_chunk : public malloc_chunk_header
{
malloc_tree_chunk *leftmost_child()
{
return _child[0] ? _child[0] : _child[1];
}
malloc_tree_chunk* _fd;
malloc_tree_chunk* _bk;
malloc_tree_chunk* _child[2];
malloc_tree_chunk* _parent;
bindex_t _index;
};
typedef malloc_tree_chunk tchunk;
typedef malloc_tree_chunk* tchunkptr;
typedef malloc_tree_chunk* tbinptr; // The type of bins of trees
/* ----------------------------- Segments -------------------------------- */
/*
Each malloc space may include non-contiguous segments, held in a
list headed by an embedded malloc_segment record representing the
top-most space. Segments also include flags holding properties of
the space. Large chunks that are directly allocated by mmap are not
included in this list. They are instead independently created and
destroyed without otherwise keeping track of them.
Segment management mainly comes into play for spaces allocated by
MMAP. Any call to MMAP might or might not return memory that is
adjacent to an existing segment. MORECORE normally contiguously
extends the current space, so this space is almost always adjacent,
which is simpler and faster to deal with. (This is why MORECORE is
used preferentially to MMAP when both are available -- see
sys_alloc.) When allocating using MMAP, we don't use any of the
hinting mechanisms (inconsistently) supported in various
implementations of unix mmap, or distinguish reserving from
committing memory. Instead, we just ask for space, and exploit
contiguity when we get it. It is probably possible to do
better than this on some systems, but no general scheme seems
to be significantly better.
Management entails a simpler variant of the consolidation scheme
used for chunks to reduce fragmentation -- new adjacent memory is
normally prepended or appended to an existing segment. However,
there are limitations compared to chunk consolidation that mostly
reflect the fact that segment processing is relatively infrequent
(occurring only when getting memory from system) and that we
don't expect to have huge numbers of segments:
* Segments are not indexed, so traversal requires linear scans. (It
would be possible to index these, but is not worth the extra
overhead and complexity for most programs on most platforms.)
* New segments are only appended to old ones when holding top-most
memory; if they cannot be prepended to others, they are held in
different segments.
Except for the top-most segment of an mstate, each segment record
is kept at the tail of its segment. Segments are added by pushing
segment records onto the list headed by &mstate.seg for the
containing mstate.
Segment flags control allocation/merge/deallocation policies:
* If EXTERN_BIT set, then we did not allocate this segment,
and so should not try to deallocate or merge with others.
(This currently holds only for the initial segment passed
into create_mspace_with_base.)
* If USE_MMAP_BIT set, the segment may be merged with
other surrounding mmapped segments and trimmed/de-allocated
using munmap.
* If neither bit is set, then the segment was obtained using
MORECORE so can be merged with surrounding MORECORE'd segments
and deallocated/trimmed using MORECORE with negative arguments.
*/
// ===============================================================================
struct malloc_segment
{
bool is_mmapped_segment() { return !!(_sflags & USE_MMAP_BIT); }
bool is_extern_segment() { return !!(_sflags & EXTERN_BIT); }
char* _base; // base address
size_t _size; // allocated size
malloc_segment* _next; // ptr to next segment
flag_t _sflags; // mmap and extern flag
};
typedef malloc_segment msegment;
typedef malloc_segment* msegmentptr;
/* ------------- Malloc_params ------------------- */
/*
malloc_params holds global properties, including those that can be
dynamically set using mallopt. There is a single instance, mparams,
initialized in init_mparams. Note that the non-zeroness of "magic"
also serves as an initialization flag.
*/
// ===============================================================================
struct malloc_params
{
malloc_params() : _magic(0) {}
void ensure_initialization()
{
if (!_magic)
_init();
}
SPP_IMPL int change(int param_number, int value);
size_t page_align(size_t sz)
{
return (sz + (_page_size - 1)) & ~(_page_size - 1);
}
size_t granularity_align(size_t sz)
{
return (sz + (_granularity - 1)) & ~(_granularity - 1);
}
bool is_page_aligned(char *S)
{
return ((size_t)S & (_page_size - 1)) == 0;
}
SPP_IMPL int _init();
size_t _magic;
size_t _page_size;
size_t _granularity;
size_t _mmap_threshold;
size_t _trim_threshold;
flag_t _default_mflags;
};
static malloc_params mparams;
/* ---------------------------- malloc_state ----------------------------- */
/*
A malloc_state holds all of the bookkeeping for a space.
The main fields are:
Top
The topmost chunk of the currently active segment. Its size is
cached in topsize. The actual size of topmost space is
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
fenceposts and segment records if necessary when getting more
space from the system. The size at which to autotrim top is
cached from mparams in trim_check, except that it is disabled if
an autotrim fails.
Designated victim (dv)
This is the preferred chunk for servicing small requests that
don't have exact fits. It is normally the chunk split off most
recently to service another small request. Its size is cached in
dvsize. The link fields of this chunk are not maintained since it
is not kept in a bin.
SmallBins
An array of bin headers for free chunks. These bins hold chunks
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
chunks of all the same size, spaced 8 bytes apart. To simplify
use in double-linked lists, each bin header acts as a malloc_chunk
pointing to the real first node, if it exists (else pointing to
itself). This avoids special-casing for headers. But to avoid
waste, we allocate only the fd/bk pointers of bins, and then use
repositioning tricks to treat these as the fields of a chunk.
TreeBins
Treebins are pointers to the roots of trees holding a range of
sizes. There are 2 equally spaced treebins for each power of two
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
larger.
Bin maps
There is one bit map for small bins ("smallmap") and one for
treebins ("treemap). Each bin sets its bit when non-empty, and
clears the bit when empty. Bit operations are then used to avoid
bin-by-bin searching -- nearly all "search" is done without ever
looking at bins that won't be selected. The bit maps
conservatively use 32 bits per map word, even if on 64bit system.
For a good description of some of the bit-based techniques used
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
supplement at http://hackersdelight.org/). Many of these are
intended to reduce the branchiness of paths through malloc etc, as
well as to reduce the number of memory locations read or written.
Segments
A list of segments headed by an embedded malloc_segment record
representing the initial space.
Address check support
The least_addr field is the least address ever obtained from
MORECORE or MMAP. Attempted frees and reallocs of any address less
than this are trapped (unless SPP_INSECURE is defined).
Magic tag
A cross-check field that should always hold same value as mparams._magic.
Max allowed footprint
The maximum allowed bytes to allocate from system (zero means no limit)
Flags
Bits recording whether to use MMAP, locks, or contiguous MORECORE
Statistics
Each space keeps track of current and maximum system memory
obtained via MORECORE or MMAP.
Trim support
Fields holding the amount of unused topmost memory that should trigger
trimming, and a counter to force periodic scanning to release unused
non-topmost segments.
Extension support
A void* pointer and a size_t field that can be used to help implement
extensions to this malloc.
*/
// ================================================================================
class malloc_state
{
public:
/* ----------------------- _malloc, _free, etc... --- */
SPP_FORCEINLINE void* _malloc(size_t bytes);
SPP_FORCEINLINE void _free(mchunkptr p);
/* ------------------------ Relays to internal calls to malloc/free from realloc, memalign etc */
void *internal_malloc(size_t b) { return mspace_malloc(this, b); }
void internal_free(void *mem) { mspace_free(this, mem); }
/* ------------------------ ----------------------- */
SPP_IMPL void init_top(mchunkptr p, size_t psize);
SPP_IMPL void init_bins();
SPP_IMPL void init(char* tbase, size_t tsize);
/* ------------------------ System alloc/dealloc -------------------------- */
SPP_IMPL void* sys_alloc(size_t nb);
SPP_IMPL size_t release_unused_segments();
SPP_IMPL int sys_trim(size_t pad);
SPP_IMPL void dispose_chunk(mchunkptr p, size_t psize);
/* ----------------------- Internal support for realloc, memalign, etc --- */
SPP_IMPL mchunkptr try_realloc_chunk(mchunkptr p, size_t nb, int can_move);
SPP_IMPL void* internal_memalign(size_t alignment, size_t bytes);
SPP_IMPL void** ialloc(size_t n_elements, size_t* sizes, int opts, void* chunks[]);
SPP_IMPL size_t internal_bulk_free(void* array[], size_t nelem);
SPP_IMPL void internal_inspect_all(void(*handler)(void *start, void *end,
size_t used_bytes, void* callback_arg),
void* arg);
/* -------------------------- system alloc setup (Operations on mflags) ----- */
bool use_lock() const { return false; }
void enable_lock() {}
void set_lock(int) {}
void disable_lock() {}
bool use_mmap() const { return !!(_mflags & USE_MMAP_BIT); }
void enable_mmap() { _mflags |= USE_MMAP_BIT; }
#if SPP_HAVE_MMAP
void disable_mmap() { _mflags &= ~USE_MMAP_BIT; }
#else
void disable_mmap() {}
#endif
/* ----------------------- Runtime Check Support ------------------------- */
/*
For security, the main invariant is that malloc/free/etc never
writes to a static address other than malloc_state, unless static
malloc_state itself has been corrupted, which cannot occur via
malloc (because of these checks). In essence this means that we
believe all pointers, sizes, maps etc held in malloc_state, but
check all of those linked or offsetted from other embedded data
structures. These checks are interspersed with main code in a way
that tends to minimize their run-time cost.
When SPP_FOOTERS is defined, in addition to range checking, we also
verify footer fields of inuse chunks, which can be used guarantee
that the mstate controlling malloc/free is intact. This is a
streamlined version of the approach described by William Robertson
et al in "Run-time Detection of Heap-based Overflows" LISA'03
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
of an inuse chunk holds the xor of its mstate and a random seed,
that is checked upon calls to free() and realloc(). This is
(probabalistically) unguessable from outside the program, but can be
computed by any code successfully malloc'ing any chunk, so does not
itself provide protection against code that has already broken
security through some other means. Unlike Robertson et al, we
always dynamically check addresses of all offset chunks (previous,
next, etc). This turns out to be cheaper than relying on hashes.
*/
#if !SPP_INSECURE
// Check if address a is at least as high as any from MORECORE or MMAP
bool ok_address(void *a) const { return (char *)a >= _least_addr; }
// Check if address of next chunk n is higher than base chunk p
static bool ok_next(void *p, void *n) { return p < n; }
// Check if p has inuse status
static bool ok_inuse(mchunkptr p) { return p->is_inuse(); }
// Check if p has its pinuse bit on
static bool ok_pinuse(mchunkptr p) { return p->pinuse(); }
// Check if (alleged) mstate m has expected magic field
bool ok_magic() const { return _magic == mparams._magic; }
// In gcc, use __builtin_expect to minimize impact of checks
#if defined(__GNUC__) && __GNUC__ >= 3
static bool rtcheck(bool e) { return __builtin_expect(e, 1); }
#else
static bool rtcheck(bool e) { return e; }
#endif
#else
static bool ok_address(void *) { return true; }
static bool ok_next(void *, void *) { return true; }
static bool ok_inuse(mchunkptr) { return true; }
static bool ok_pinuse(mchunkptr) { return true; }
static bool ok_magic() { return true; }
static bool rtcheck(bool) { return true; }
#endif
bool is_initialized() const { return _top != 0; }
bool use_noncontiguous() const { return !!(_mflags & USE_NONCONTIGUOUS_BIT); }
void disable_contiguous() { _mflags |= USE_NONCONTIGUOUS_BIT; }
// Return segment holding given address
msegmentptr segment_holding(char* addr) const
{
msegmentptr sp = (msegmentptr)&_seg;
for (;;)
{
if (addr >= sp->_base && addr < sp->_base + sp->_size)
return sp;
if ((sp = sp->_next) == 0)
return 0;
}
}
// Return true if segment contains a segment link
int has_segment_link(msegmentptr ss) const
{
msegmentptr sp = (msegmentptr)&_seg;
for (;;)
{
if ((char*)sp >= ss->_base && (char*)sp < ss->_base + ss->_size)
return 1;
if ((sp = sp->_next) == 0)
return 0;
}
}
bool should_trim(size_t s) const { return s > _trim_check; }
/* -------------------------- Debugging setup ---------------------------- */
#if ! SPP_DEBUG
void check_free_chunk(mchunkptr) {}
void check_inuse_chunk(mchunkptr) {}
void check_malloced_chunk(void*, size_t) {}
void check_mmapped_chunk(mchunkptr) {}
void check_malloc_state() {}
void check_top_chunk(mchunkptr) {}
#else /* SPP_DEBUG */
void check_free_chunk(mchunkptr p) { do_check_free_chunk(p); }
void check_inuse_chunk(mchunkptr p) { do_check_inuse_chunk(p); }
void check_malloced_chunk(void* p, size_t s) { do_check_malloced_chunk(p, s); }
void check_mmapped_chunk(mchunkptr p) { do_check_mmapped_chunk(p); }
void check_malloc_state() { do_check_malloc_state(); }
void check_top_chunk(mchunkptr p) { do_check_top_chunk(p); }
void do_check_any_chunk(mchunkptr p) const;
void do_check_top_chunk(mchunkptr p) const;
void do_check_mmapped_chunk(mchunkptr p) const;
void do_check_inuse_chunk(mchunkptr p) const;
void do_check_free_chunk(mchunkptr p) const;
void do_check_malloced_chunk(void* mem, size_t s) const;
void do_check_tree(tchunkptr t);
void do_check_treebin(bindex_t i);
void do_check_smallbin(bindex_t i);
void do_check_malloc_state();
int bin_find(mchunkptr x);
size_t traverse_and_check();
#endif
private:
/* ---------------------------- Indexing Bins ---------------------------- */
static bool is_small(size_t s) { return (s >> SMALLBIN_SHIFT) < NSMALLBINS; }
static bindex_t small_index(size_t s) { return (bindex_t)(s >> SMALLBIN_SHIFT); }
static size_t small_index2size(size_t i) { return i << SMALLBIN_SHIFT; }
static bindex_t MIN_SMALL_INDEX() { return small_index(MIN_CHUNK_SIZE); }
// assign tree index for size S to variable I. Use x86 asm if possible
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
unsigned int X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K = (unsigned) sizeof(X) * __CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#elif defined (__INTEL_COMPILER)
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K = _bit_scan_reverse(X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K;
_BitScanReverse((DWORD *) &K, (DWORD) X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#else // GNUC
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int Y = (unsigned int)X;
unsigned int N = ((Y - 0x100) >> 16) & 8;
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;
N += K;
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;
K = 14 - N + ((Y <<= K) >> 15);
return (K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1));
}
#endif
// Shift placing maximum resolved bit in a treebin at i as sign bit
static bindex_t leftshift_for_tree_index(bindex_t i)
{
return (i == NTREEBINS - 1) ? 0 :
((spp_size_t_bitsize - 1) - ((i >> 1) + TREEBIN_SHIFT - 2));
}
// The size of the smallest chunk held in bin with index i
static bindex_t minsize_for_tree_index(bindex_t i)
{
return ((size_t)1 << ((i >> 1) + TREEBIN_SHIFT)) |
(((size_t)(i & 1)) << ((i >> 1) + TREEBIN_SHIFT - 1));
}
// ----------- isolate the least set bit of a bitmap
static binmap_t least_bit(binmap_t x) { return x & -x; }
// ----------- mask with all bits to left of least bit of x on
static binmap_t left_bits(binmap_t x) { return (x << 1) | -(x << 1); }
// index corresponding to given bit. Use x86 asm if possible
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
J = __builtin_ctz(X);
return (bindex_t)J;
}
#elif defined (__INTEL_COMPILER)
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
J = _bit_scan_forward(X);
return (bindex_t)J;
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
_BitScanForward((DWORD *) &J, X);
return (bindex_t)J;
}
#elif SPP_USE_BUILTIN_FFS
static bindex_t compute_bit2idx(binmap_t X) { return ffs(X) - 1; }
#else
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int Y = X - 1;
unsigned int K = Y >> (16 - 4) & 16;
unsigned int N = K; Y >>= K;
N += K = Y >> (8 - 3) & 8; Y >>= K;
N += K = Y >> (4 - 2) & 4; Y >>= K;
N += K = Y >> (2 - 1) & 2; Y >>= K;
N += K = Y >> (1 - 0) & 1; Y >>= K;
return (bindex_t)(N + Y);
}
#endif
/* ------------------------ Set up inuse chunks with or without footers ---*/
#if !SPP_FOOTERS
void mark_inuse_foot(malloc_chunk_header *, size_t) {}
#else
//Set foot of inuse chunk to be xor of mstate and seed
void mark_inuse_foot(malloc_chunk_header *p, size_t s)
{
(((mchunkptr)((char*)p + s))->prev_foot = (size_t)this ^ mparams._magic);
}
#endif
void set_inuse(malloc_chunk_header *p, size_t s)
{
p->_head = (p->_head & PINUSE_BIT) | s | CINUSE_BIT;
((mchunkptr)(((char*)p) + s))->_head |= PINUSE_BIT;
mark_inuse_foot(p, s);
}
void set_inuse_and_pinuse(malloc_chunk_header *p, size_t s)
{
p->_head = s | PINUSE_BIT | CINUSE_BIT;
((mchunkptr)(((char*)p) + s))->_head |= PINUSE_BIT;
mark_inuse_foot(p, s);
}
void set_size_and_pinuse_of_inuse_chunk(malloc_chunk_header *p, size_t s)
{
p->_head = s | PINUSE_BIT | CINUSE_BIT;
mark_inuse_foot(p, s);
}
/* ------------------------ Addressing by index. See about smallbin repositioning --- */
sbinptr smallbin_at(bindex_t i) const { return (sbinptr)((char*)&_smallbins[i << 1]); }
tbinptr* treebin_at(bindex_t i) { return &_treebins[i]; }
/* ----------------------- bit corresponding to given index ---------*/
static binmap_t idx2bit(bindex_t i) { return ((binmap_t)1 << i); }
// --------------- Mark/Clear bits with given index
void mark_smallmap(bindex_t i) { _smallmap |= idx2bit(i); }
void clear_smallmap(bindex_t i) { _smallmap &= ~idx2bit(i); }
binmap_t smallmap_is_marked(bindex_t i) const { return _smallmap & idx2bit(i); }
void mark_treemap(bindex_t i) { _treemap |= idx2bit(i); }
void clear_treemap(bindex_t i) { _treemap &= ~idx2bit(i); }
binmap_t treemap_is_marked(bindex_t i) const { return _treemap & idx2bit(i); }
/* ------------------------ ----------------------- */
SPP_FORCEINLINE void insert_small_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_small_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_first_small_chunk(mchunkptr B, mchunkptr P, bindex_t I);
SPP_FORCEINLINE void replace_dv(mchunkptr P, size_t S);
/* ------------------------- Operations on trees ------------------------- */
SPP_FORCEINLINE void insert_large_chunk(tchunkptr X, size_t S);
SPP_FORCEINLINE void unlink_large_chunk(tchunkptr X);
/* ------------------------ Relays to large vs small bin operations */
SPP_FORCEINLINE void insert_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_chunk(mchunkptr P, size_t S);
/* ----------------------- Direct-mmapping chunks ----------------------- */
SPP_IMPL void* mmap_alloc(size_t nb);
SPP_IMPL mchunkptr mmap_resize(mchunkptr oldp, size_t nb, int flags);
SPP_IMPL void reset_on_error();
SPP_IMPL void* prepend_alloc(char* newbase, char* oldbase, size_t nb);
SPP_IMPL void add_segment(char* tbase, size_t tsize, flag_t mmapped);
/* ------------------------ malloc --------------------------- */
SPP_IMPL void* tmalloc_large(size_t nb);
SPP_IMPL void* tmalloc_small(size_t nb);
/* ------------------------Bin types, widths and sizes -------- */
static const size_t NSMALLBINS = 32;
static const size_t NTREEBINS = 32;
static const size_t SMALLBIN_SHIFT = 3;
static const size_t SMALLBIN_WIDTH = 1 << SMALLBIN_SHIFT;
static const size_t TREEBIN_SHIFT = 8;
static const size_t MIN_LARGE_SIZE = 1 << TREEBIN_SHIFT;
static const size_t MAX_SMALL_SIZE = (MIN_LARGE_SIZE - 1);
static const size_t MAX_SMALL_REQUEST = (MAX_SMALL_SIZE - spp_chunk_align_mask - CHUNK_OVERHEAD);
/* ------------------------ data members --------------------------- */
binmap_t _smallmap;
binmap_t _treemap;
size_t _dvsize;
size_t _topsize;
char* _least_addr;
mchunkptr _dv;
mchunkptr _top;
size_t _trim_check;
size_t _release_checks;
size_t _magic;
mchunkptr _smallbins[(NSMALLBINS + 1) * 2];
tbinptr _treebins[NTREEBINS];
public:
size_t _footprint;
size_t _max_footprint;
size_t _footprint_limit; // zero means no limit
flag_t _mflags;
msegment _seg;
private:
void* _extp; // Unused but available for extensions
size_t _exts;
};
typedef malloc_state* mstate;
/* ------------- end malloc_state ------------------- */
#if SPP_FOOTERS
static malloc_state* get_mstate_for(malloc_chunk_header *p)
{
return (malloc_state*)(((mchunkptr)((char*)(p) +
(p->chunksize())))->prev_foot ^ mparams._magic);
}
#endif
/* -------------------------- system alloc setup ------------------------- */
// For mmap, use granularity alignment on windows, else page-align
#ifdef WIN32
#define mmap_align(S) mparams.granularity_align(S)
#else
#define mmap_align(S) mparams.page_align(S)
#endif
// True if segment S holds address A
static bool segment_holds(msegmentptr S, mchunkptr A)
{
return (char*)A >= S->_base && (char*)A < S->_base + S->_size;
}
/*
top_foot_size is padding at the end of a segment, including space
that may be needed to place segment records and fenceposts when new
noncontiguous segments are added.
*/
static SPP_FORCEINLINE size_t top_foot_size()
{
return align_offset(chunk2mem((void *)0)) +
pad_request(sizeof(struct malloc_segment)) +
MIN_CHUNK_SIZE;
}
// For sys_alloc, enough padding to ensure can malloc request on success
static SPP_FORCEINLINE size_t sys_alloc_padding()
{
return top_foot_size() + SPP_MALLOC_ALIGNMENT;
}
#define SPP_USAGE_ERROR_ACTION(m,p) SPP_ABORT
/* ---------------------------- setting mparams -------------------------- */
// Initialize mparams
int malloc_params::_init()
{
#ifdef NEED_GLOBAL_LOCK_INIT
if (malloc_global_mutex_status <= 0)
init_malloc_global_mutex();
#endif
if (_magic == 0)
{
size_t magic;
size_t psize;
size_t gsize;
#ifndef WIN32
psize = malloc_getpagesize;
gsize = ((SPP_DEFAULT_GRANULARITY != 0) ? SPP_DEFAULT_GRANULARITY : psize);
#else
{
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
psize = system_info.dwPageSize;
gsize = ((SPP_DEFAULT_GRANULARITY != 0) ?
SPP_DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
}
#endif
/* Sanity-check configuration:
size_t must be unsigned and as wide as pointer type.
ints must be at least 4 bytes.
alignment must be at least 8.
Alignment, min chunk size, and page size must all be powers of 2.
*/
if ((sizeof(size_t) != sizeof(char*)) ||
(spp_max_size_t < MIN_CHUNK_SIZE) ||
(sizeof(int) < 4) ||
(SPP_MALLOC_ALIGNMENT < (size_t)8U) ||
((SPP_MALLOC_ALIGNMENT & (SPP_MALLOC_ALIGNMENT - 1)) != 0) ||
((MCHUNK_SIZE & (MCHUNK_SIZE - 1)) != 0) ||
((gsize & (gsize - 1)) != 0) ||
((psize & (psize - 1)) != 0))
SPP_ABORT;
_granularity = gsize;
_page_size = psize;
_mmap_threshold = SPP_DEFAULT_MMAP_THRESHOLD;
_trim_threshold = SPP_DEFAULT_TRIM_THRESHOLD;
_default_mflags = USE_MMAP_BIT | USE_NONCONTIGUOUS_BIT;
{
#if SPP_USE_DEV_RANDOM
int fd;
unsigned char buf[sizeof(size_t)];
// Try to use /dev/urandom, else fall back on using time
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
read(fd, buf, sizeof(buf)) == sizeof(buf))
{
magic = *((size_t *) buf);
close(fd);
}
else
#endif
{
#ifdef WIN32
magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
#elif defined(SPP_LACKS_TIME_H)
magic = (size_t)&magic ^ (size_t)0x55555555U;
#else
magic = (size_t)(time(0) ^ (size_t)0x55555555U);
#endif
}
magic |= (size_t)8U; // ensure nonzero
magic &= ~(size_t)7U; // improve chances of fault for bad values
// Until memory modes commonly available, use volatile-write
(*(volatile size_t *)(&(_magic))) = magic;
}
}
return 1;
}
/*
mallopt tuning options. SVID/XPG defines four standard parameter
numbers for mallopt, normally defined in malloc.h. None of these
are used in this malloc, so setting them has no effect. But this
malloc does support the following options.
*/
static const int m_trim_threshold = -1;
static const int m_granularity = -2;
static const int m_mmap_threshold = -3;
// support for mallopt
int malloc_params::change(int param_number, int value)
{
size_t val;
ensure_initialization();
val = (value == -1) ? spp_max_size_t : (size_t)value;
switch (param_number)
{
case m_trim_threshold:
_trim_threshold = val;
return 1;
case m_granularity:
if (val >= _page_size && ((val & (val - 1)) == 0))
{
_granularity = val;
return 1;
}
else
return 0;
case m_mmap_threshold:
_mmap_threshold = val;
return 1;
default:
return 0;
}
}
#if SPP_DEBUG
/* ------------------------- Debugging Support --------------------------- */
// Check properties of any chunk, whether free, inuse, mmapped etc
void malloc_state::do_check_any_chunk(mchunkptr p) const
{
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
}
// Check properties of top chunk
void malloc_state::do_check_top_chunk(mchunkptr p) const
{
msegmentptr sp = segment_holding((char*)p);
size_t sz = p->_head & ~INUSE_BITS; // third-lowest bit can be set!
assert(sp != 0);
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
assert(sz == _topsize);
assert(sz > 0);
assert(sz == ((sp->_base + sp->_size) - (char*)p) - top_foot_size());
assert(p->pinuse());
assert(!p->chunk_plus_offset(sz)->pinuse());
}
// Check properties of (inuse) mmapped chunks
void malloc_state::do_check_mmapped_chunk(mchunkptr p) const
{
size_t sz = p->chunksize();
size_t len = (sz + (p->_prev_foot) + SPP_MMAP_FOOT_PAD);
assert(p->is_mmapped());
assert(use_mmap());
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
assert(!is_small(sz));
assert((len & (mparams._page_size - 1)) == 0);
assert(p->chunk_plus_offset(sz)->_head == FENCEPOST_HEAD);
assert(p->chunk_plus_offset(sz + sizeof(size_t))->_head == 0);
}
// Check properties of inuse chunks
void malloc_state::do_check_inuse_chunk(mchunkptr p) const
{
do_check_any_chunk(p);
assert(p->is_inuse());
assert(p->next_pinuse());
// If not pinuse and not mmapped, previous chunk has OK offset
assert(p->is_mmapped() || p->pinuse() || (mchunkptr)p->prev_chunk()->next_chunk() == p);
if (p->is_mmapped())
do_check_mmapped_chunk(p);
}
// Check properties of free chunks
void malloc_state::do_check_free_chunk(mchunkptr p) const
{
size_t sz = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(sz);
do_check_any_chunk(p);
assert(!p->is_inuse());
assert(!p->next_pinuse());
assert(!p->is_mmapped());
if (p != _dv && p != _top)
{
if (sz >= MIN_CHUNK_SIZE)
{
assert((sz & spp_chunk_align_mask) == 0);
assert(spp_is_aligned(chunk2mem(p)));
assert(next->_prev_foot == sz);
assert(p->pinuse());
assert(next == _top || next->is_inuse());
assert(p->_fd->_bk == p);
assert(p->_bk->_fd == p);
}
else // markers are always of size sizeof(size_t)
assert(sz == sizeof(size_t));
}
}
// Check properties of malloced chunks at the point they are malloced
void malloc_state::do_check_malloced_chunk(void* mem, size_t s) const
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
size_t sz = p->_head & ~INUSE_BITS;
do_check_inuse_chunk(p);
assert((sz & spp_chunk_align_mask) == 0);
assert(sz >= MIN_CHUNK_SIZE);
assert(sz >= s);
// unless mmapped, size is less than MIN_CHUNK_SIZE more than request
assert(p->is_mmapped() || sz < (s + MIN_CHUNK_SIZE));
}
}
// Check a tree and its subtrees.
void malloc_state::do_check_tree(tchunkptr t)
{
tchunkptr head = 0;
tchunkptr u = t;
bindex_t tindex = t->_index;
size_t tsize = t->chunksize();
bindex_t idx = compute_tree_index(tsize);
assert(tindex == idx);
assert(tsize >= MIN_LARGE_SIZE);
assert(tsize >= minsize_for_tree_index(idx));
assert((idx == NTREEBINS - 1) || (tsize < minsize_for_tree_index((idx + 1))));
do
{
// traverse through chain of same-sized nodes
do_check_any_chunk((mchunkptr)u);
assert(u->_index == tindex);
assert(u->chunksize() == tsize);
assert(!u->is_inuse());
assert(!u->next_pinuse());
assert(u->_fd->_bk == u);
assert(u->_bk->_fd == u);
if (u->_parent == 0)
{
assert(u->_child[0] == 0);
assert(u->_child[1] == 0);
}
else
{
assert(head == 0); // only one node on chain has parent
head = u;
assert(u->_parent != u);
assert(u->_parent->_child[0] == u ||
u->_parent->_child[1] == u ||
*((tbinptr*)(u->_parent)) == u);
if (u->_child[0] != 0)
{
assert(u->_child[0]->_parent == u);
assert(u->_child[0] != u);
do_check_tree(u->_child[0]);
}
if (u->_child[1] != 0)
{
assert(u->_child[1]->_parent == u);
assert(u->_child[1] != u);
do_check_tree(u->_child[1]);
}
if (u->_child[0] != 0 && u->_child[1] != 0)
assert(u->_child[0]->chunksize() < u->_child[1]->chunksize());
}
u = u->_fd;
}
while (u != t);
assert(head != 0);
}
// Check all the chunks in a treebin.
void malloc_state::do_check_treebin(bindex_t i)
{
tbinptr* tb = (tbinptr*)treebin_at(i);
tchunkptr t = *tb;
int empty = (_treemap & (1U << i)) == 0;
if (t == 0)
assert(empty);
if (!empty)
do_check_tree(t);
}
// Check all the chunks in a smallbin.
void malloc_state::do_check_smallbin(bindex_t i)
{
sbinptr b = smallbin_at(i);
mchunkptr p = b->_bk;
unsigned int empty = (_smallmap & (1U << i)) == 0;
if (p == b)
assert(empty);
if (!empty)
{
for (; p != b; p = p->_bk)
{
size_t size = p->chunksize();
mchunkptr q;
// each chunk claims to be free
do_check_free_chunk(p);
// chunk belongs in bin
assert(small_index(size) == i);
assert(p->_bk == b || p->_bk->chunksize() == p->chunksize());
// chunk is followed by an inuse chunk
q = (mchunkptr)p->next_chunk();
if (q->_head != FENCEPOST_HEAD)
do_check_inuse_chunk(q);
}
}
}
// Find x in a bin. Used in other check functions.
int malloc_state::bin_find(mchunkptr x)
{
size_t size = x->chunksize();
if (is_small(size))
{
bindex_t sidx = small_index(size);
sbinptr b = smallbin_at(sidx);
if (smallmap_is_marked(sidx))
{
mchunkptr p = b;
do
{
if (p == x)
return 1;
}
while ((p = p->_fd) != b);
}
}
else
{
bindex_t tidx = compute_tree_index(size);
if (treemap_is_marked(tidx))
{
tchunkptr t = *treebin_at(tidx);
size_t sizebits = size << leftshift_for_tree_index(tidx);
while (t != 0 && t->chunksize() != size)
{
t = t->_child[(sizebits >> (spp_size_t_bitsize - 1)) & 1];
sizebits <<= 1;
}
if (t != 0)
{
tchunkptr u = t;
do
{
if (u == (tchunkptr)x)
return 1;
}
while ((u = u->_fd) != t);
}
}
}
return 0;
}
// Traverse each chunk and check it; return total
size_t malloc_state::traverse_and_check()
{
size_t sum = 0;
if (is_initialized())
{
msegmentptr s = (msegmentptr)&_seg;
sum += _topsize + top_foot_size();
while (s != 0)
{
mchunkptr q = align_as_chunk(s->_base);
mchunkptr lastq = 0;
assert(q->pinuse());
while (segment_holds(s, q) &&
q != _top && q->_head != FENCEPOST_HEAD)
{
sum += q->chunksize();
if (q->is_inuse())
{
assert(!bin_find(q));
do_check_inuse_chunk(q);
}
else
{
assert(q == _dv || bin_find(q));
assert(lastq == 0 || lastq->is_inuse()); // Not 2 consecutive free
do_check_free_chunk(q);
}
lastq = q;
q = (mchunkptr)q->next_chunk();
}
s = s->_next;
}
}
return sum;
}
// Check all properties of malloc_state.
void malloc_state::do_check_malloc_state()
{
bindex_t i;
size_t total;
// check bins
for (i = 0; i < NSMALLBINS; ++i)
do_check_smallbin(i);
for (i = 0; i < NTREEBINS; ++i)
do_check_treebin(i);
if (_dvsize != 0)
{
// check dv chunk
do_check_any_chunk(_dv);
assert(_dvsize == _dv->chunksize());
assert(_dvsize >= MIN_CHUNK_SIZE);
assert(bin_find(_dv) == 0);
}
if (_top != 0)
{
// check top chunk
do_check_top_chunk(_top);
//assert(topsize == top->chunksize()); redundant
assert(_topsize > 0);
assert(bin_find(_top) == 0);
}
total = traverse_and_check();
assert(total <= _footprint);
assert(_footprint <= _max_footprint);
}
#endif // SPP_DEBUG
/* ----------------------- Operations on smallbins ----------------------- */
/*
Various forms of linking and unlinking are defined as macros. Even
the ones for trees, which are very long but have very short typical
paths. This is ugly but reduces reliance on inlining support of
compilers.
*/
// Link a free chunk into a smallbin
void malloc_state::insert_small_chunk(mchunkptr p, size_t s)
{
bindex_t I = small_index(s);
mchunkptr B = smallbin_at(I);
mchunkptr F = B;
assert(s >= MIN_CHUNK_SIZE);
if (!smallmap_is_marked(I))
mark_smallmap(I);
else if (rtcheck(ok_address(B->_fd)))
F = B->_fd;
else
SPP_ABORT;
B->_fd = p;
F->_bk = p;
p->_fd = F;
p->_bk = B;
}
// Unlink a chunk from a smallbin
void malloc_state::unlink_small_chunk(mchunkptr p, size_t s)
{
mchunkptr F = p->_fd;
mchunkptr B = p->_bk;
bindex_t I = small_index(s);
assert(p != B);
assert(p != F);
assert(p->chunksize() == small_index2size(I));
if (rtcheck(F == smallbin_at(I) || (ok_address(F) && F->_bk == p)))
{
if (B == F)
clear_smallmap(I);
else if (rtcheck(B == smallbin_at(I) ||
(ok_address(B) && B->_fd == p)))
{
F->_bk = B;
B->_fd = F;
}
else
SPP_ABORT;
}
else
SPP_ABORT;
}
// Unlink the first chunk from a smallbin
void malloc_state::unlink_first_small_chunk(mchunkptr B, mchunkptr p, bindex_t I)
{
mchunkptr F = p->_fd;
assert(p != B);
assert(p != F);
assert(p->chunksize() == small_index2size(I));
if (B == F)
clear_smallmap(I);
else if (rtcheck(ok_address(F) && F->_bk == p))
{
F->_bk = B;
B->_fd = F;
}
else
SPP_ABORT;
}
// Replace dv node, binning the old one
// Used only when dvsize known to be small
void malloc_state::replace_dv(mchunkptr p, size_t s)
{
size_t DVS = _dvsize;
assert(is_small(DVS));
if (DVS != 0)
{
mchunkptr DV = _dv;
insert_small_chunk(DV, DVS);
}
_dvsize = s;
_dv = p;
}
/* ------------------------- Operations on trees ------------------------- */
// Insert chunk into tree
void malloc_state::insert_large_chunk(tchunkptr X, size_t s)
{
tbinptr* H;
bindex_t I = compute_tree_index(s);
H = treebin_at(I);
X->_index = I;
X->_child[0] = X->_child[1] = 0;
if (!treemap_is_marked(I))
{
mark_treemap(I);
*H = X;
X->_parent = (tchunkptr)H;
X->_fd = X->_bk = X;
}
else
{
tchunkptr T = *H;
size_t K = s << leftshift_for_tree_index(I);
for (;;)
{
if (T->chunksize() != s)
{
tchunkptr* C = &(T->_child[(K >> (spp_size_t_bitsize - 1)) & 1]);
K <<= 1;
if (*C != 0)
T = *C;
else if (rtcheck(ok_address(C)))
{
*C = X;
X->_parent = T;
X->_fd = X->_bk = X;
break;
}
else
{
SPP_ABORT;
break;
}
}
else
{
tchunkptr F = T->_fd;
if (rtcheck(ok_address(T) && ok_address(F)))
{
T->_fd = F->_bk = X;
X->_fd = F;
X->_bk = T;
X->_parent = 0;
break;
}
else
{
SPP_ABORT;
break;
}
}
}
}
}
/*
Unlink steps:
1. If x is a chained node, unlink it from its same-sized fd/bk links
and choose its bk node as its replacement.
2. If x was the last node of its size, but not a leaf node, it must
be replaced with a leaf node (not merely one with an open left or
right), to make sure that lefts and rights of descendents
correspond properly to bit masks. We use the rightmost descendent
of x. We could use any other leaf, but this is easy to locate and
tends to counteract removal of leftmosts elsewhere, and so keeps
paths shorter than minimally guaranteed. This doesn't loop much
because on average a node in a tree is near the bottom.
3. If x is the base of a chain (i.e., has parent links) relink
x's parent and children to x's replacement (or null if none).
*/
void malloc_state::unlink_large_chunk(tchunkptr X)
{
tchunkptr XP = X->_parent;
tchunkptr R;
if (X->_bk != X)
{
tchunkptr F = X->_fd;
R = X->_bk;
if (rtcheck(ok_address(F) && F->_bk == X && R->_fd == X))
{
F->_bk = R;
R->_fd = F;
}
else
SPP_ABORT;
}
else
{
tchunkptr* RP;
if (((R = *(RP = &(X->_child[1]))) != 0) ||
((R = *(RP = &(X->_child[0]))) != 0))
{
tchunkptr* CP;
while ((*(CP = &(R->_child[1])) != 0) ||
(*(CP = &(R->_child[0])) != 0))
R = *(RP = CP);
if (rtcheck(ok_address(RP)))
*RP = 0;
else
SPP_ABORT;
}
}
if (XP != 0)
{
tbinptr* H = treebin_at(X->_index);
if (X == *H)
{
if ((*H = R) == 0)
clear_treemap(X->_index);
}
else if (rtcheck(ok_address(XP)))
{
if (XP->_child[0] == X)
XP->_child[0] = R;
else
XP->_child[1] = R;
}
else
SPP_ABORT;
if (R != 0)
{
if (rtcheck(ok_address(R)))
{
tchunkptr C0, C1;
R->_parent = XP;
if ((C0 = X->_child[0]) != 0)
{
if (rtcheck(ok_address(C0)))
{
R->_child[0] = C0;
C0->_parent = R;
}
else
SPP_ABORT;
}
if ((C1 = X->_child[1]) != 0)
{
if (rtcheck(ok_address(C1)))
{
R->_child[1] = C1;
C1->_parent = R;
}
else
SPP_ABORT;
}
}
else
SPP_ABORT;
}
}
}
// Relays to large vs small bin operations
void malloc_state::insert_chunk(mchunkptr p, size_t s)
{
if (is_small(s))
insert_small_chunk(p, s);
else
{
tchunkptr tp = (tchunkptr)(p);
insert_large_chunk(tp, s);
}
}
void malloc_state::unlink_chunk(mchunkptr p, size_t s)
{
if (is_small(s))
unlink_small_chunk(p, s);
else
{
tchunkptr tp = (tchunkptr)(p);
unlink_large_chunk(tp);
}
}
/* ----------------------- Direct-mmapping chunks ----------------------- */
/*
Directly mmapped chunks are set up with an offset to the start of
the mmapped region stored in the prev_foot field of the chunk. This
allows reconstruction of the required argument to MUNMAP when freed,
and also allows adjustment of the returned chunk to meet alignment
requirements (especially in memalign).
*/
// Malloc using mmap
void* malloc_state::mmap_alloc(size_t nb)
{
size_t mmsize = mmap_align(nb + 6 * sizeof(size_t) + spp_chunk_align_mask);
if (_footprint_limit != 0)
{
size_t fp = _footprint + mmsize;
if (fp <= _footprint || fp > _footprint_limit)
return 0;
}
if (mmsize > nb)
{
// Check for wrap around 0
char* mm = (char*)(SPP_CALL_DIRECT_MMAP(mmsize));
if (mm != cmfail)
{
size_t offset = align_offset(chunk2mem(mm));
size_t psize = mmsize - offset - SPP_MMAP_FOOT_PAD;
mchunkptr p = (mchunkptr)(mm + offset);
p->_prev_foot = offset;
p->_head = psize;
mark_inuse_foot(p, psize);
p->chunk_plus_offset(psize)->_head = FENCEPOST_HEAD;
p->chunk_plus_offset(psize + sizeof(size_t))->_head = 0;
if (_least_addr == 0 || mm < _least_addr)
_least_addr = mm;
if ((_footprint += mmsize) > _max_footprint)
_max_footprint = _footprint;
assert(spp_is_aligned(chunk2mem(p)));
check_mmapped_chunk(p);
return chunk2mem(p);
}
}
return 0;
}
// Realloc using mmap
mchunkptr malloc_state::mmap_resize(mchunkptr oldp, size_t nb, int flags)
{
size_t oldsize = oldp->chunksize();
(void)flags; // placate people compiling -Wunused
if (is_small(nb)) // Can't shrink mmap regions below small size
return 0;
// Keep old chunk if big enough but not too big
if (oldsize >= nb + sizeof(size_t) &&
(oldsize - nb) <= (mparams._granularity << 1))
return oldp;
else
{
size_t offset = oldp->_prev_foot;
size_t oldmmsize = oldsize + offset + SPP_MMAP_FOOT_PAD;
size_t newmmsize = mmap_align(nb + 6 * sizeof(size_t) + spp_chunk_align_mask);
char* cp = (char*)SPP_CALL_MREMAP((char*)oldp - offset,
oldmmsize, newmmsize, flags);
if (cp != cmfail)
{
mchunkptr newp = (mchunkptr)(cp + offset);
size_t psize = newmmsize - offset - SPP_MMAP_FOOT_PAD;
newp->_head = psize;
mark_inuse_foot(newp, psize);
newp->chunk_plus_offset(psize)->_head = FENCEPOST_HEAD;
newp->chunk_plus_offset(psize + sizeof(size_t))->_head = 0;
if (cp < _least_addr)
_least_addr = cp;
if ((_footprint += newmmsize - oldmmsize) > _max_footprint)
_max_footprint = _footprint;
check_mmapped_chunk(newp);
return newp;
}
}
return 0;
}
/* -------------------------- mspace management -------------------------- */
// Initialize top chunk and its size
void malloc_state::init_top(mchunkptr p, size_t psize)
{
// Ensure alignment
size_t offset = align_offset(chunk2mem(p));
p = (mchunkptr)((char*)p + offset);
psize -= offset;
_top = p;
_topsize = psize;
p->_head = psize | PINUSE_BIT;
// set size of fake trailing chunk holding overhead space only once
p->chunk_plus_offset(psize)->_head = top_foot_size();
_trim_check = mparams._trim_threshold; // reset on each update
}
// Initialize bins for a new mstate that is otherwise zeroed out
void malloc_state::init_bins()
{
// Establish circular links for smallbins
bindex_t i;
for (i = 0; i < NSMALLBINS; ++i)
{
sbinptr bin = smallbin_at(i);
bin->_fd = bin->_bk = bin;
}
}
#if SPP_PROCEED_ON_ERROR
// default corruption action
void malloc_state::reset_on_error()
{
int i;
++malloc_corruption_error_count;
// Reinitialize fields to forget about all memory
_smallmap = _treemap = 0;
_dvsize = _topsize = 0;
_seg._base = 0;
_seg._size = 0;
_seg._next = 0;
_top = _dv = 0;
for (i = 0; i < NTREEBINS; ++i)
*treebin_at(i) = 0;
init_bins();
}
#endif
/* Allocate chunk and prepend remainder with chunk in successor base. */
void* malloc_state::prepend_alloc(char* newbase, char* oldbase, size_t nb)
{
mchunkptr p = align_as_chunk(newbase);
mchunkptr oldfirst = align_as_chunk(oldbase);
size_t psize = (char*)oldfirst - (char*)p;
mchunkptr q = (mchunkptr)p->chunk_plus_offset(nb);
size_t qsize = psize - nb;
set_size_and_pinuse_of_inuse_chunk(p, nb);
assert((char*)oldfirst > (char*)q);
assert(oldfirst->pinuse());
assert(qsize >= MIN_CHUNK_SIZE);
// consolidate remainder with first chunk of old base
if (oldfirst == _top)
{
size_t tsize = _topsize += qsize;
_top = q;
q->_head = tsize | PINUSE_BIT;
check_top_chunk(q);
}
else if (oldfirst == _dv)
{
size_t dsize = _dvsize += qsize;
_dv = q;
q->set_size_and_pinuse_of_free_chunk(dsize);
}
else
{
if (!oldfirst->is_inuse())
{
size_t nsize = oldfirst->chunksize();
unlink_chunk(oldfirst, nsize);
oldfirst = (mchunkptr)oldfirst->chunk_plus_offset(nsize);
qsize += nsize;
}
q->set_free_with_pinuse(qsize, oldfirst);
insert_chunk(q, qsize);
check_free_chunk(q);
}
check_malloced_chunk(chunk2mem(p), nb);
return chunk2mem(p);
}
// Add a segment to hold a new noncontiguous region
void malloc_state::add_segment(char* tbase, size_t tsize, flag_t mmapped)
{
// Determine locations and sizes of segment, fenceposts, old top
char* old_top = (char*)_top;
msegmentptr oldsp = segment_holding(old_top);
char* old_end = oldsp->_base + oldsp->_size;
size_t ssize = pad_request(sizeof(struct malloc_segment));
char* rawsp = old_end - (ssize + 4 * sizeof(size_t) + spp_chunk_align_mask);
size_t offset = align_offset(chunk2mem(rawsp));
char* asp = rawsp + offset;
char* csp = (asp < (old_top + MIN_CHUNK_SIZE)) ? old_top : asp;
mchunkptr sp = (mchunkptr)csp;
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
mchunkptr tnext = (mchunkptr)sp->chunk_plus_offset(ssize);
mchunkptr p = tnext;
int nfences = 0;
// reset top to new space
init_top((mchunkptr)tbase, tsize - top_foot_size());
// Set up segment record
assert(spp_is_aligned(ss));
set_size_and_pinuse_of_inuse_chunk(sp, ssize);
*ss = _seg; // Push current record
_seg._base = tbase;
_seg._size = tsize;
_seg._sflags = mmapped;
_seg._next = ss;
// Insert trailing fenceposts
for (;;)
{
mchunkptr nextp = (mchunkptr)p->chunk_plus_offset(sizeof(size_t));
p->_head = FENCEPOST_HEAD;
++nfences;
if ((char*)(&(nextp->_head)) < old_end)
p = nextp;
else
break;
}
assert(nfences >= 2);
// Insert the rest of old top into a bin as an ordinary free chunk
if (csp != old_top)
{
mchunkptr q = (mchunkptr)old_top;
size_t psize = csp - old_top;
mchunkptr tn = (mchunkptr)q->chunk_plus_offset(psize);
q->set_free_with_pinuse(psize, tn);
insert_chunk(q, psize);
}
check_top_chunk(_top);
}
/* -------------------------- System allocation -------------------------- */
// Get memory from system using MMAP
void* malloc_state::sys_alloc(size_t nb)
{
char* tbase = cmfail;
size_t tsize = 0;
flag_t mmap_flag = 0;
size_t asize; // allocation size
mparams.ensure_initialization();
// Directly map large chunks, but only if already initialized
if (use_mmap() && nb >= mparams._mmap_threshold && _topsize != 0)
{
void* mem = mmap_alloc(nb);
if (mem != 0)
return mem;
}
asize = mparams.granularity_align(nb + sys_alloc_padding());
if (asize <= nb)
return 0; // wraparound
if (_footprint_limit != 0)
{
size_t fp = _footprint + asize;
if (fp <= _footprint || fp > _footprint_limit)
return 0;
}
/*
Try getting memory with a call to MMAP new space (disabled if not SPP_HAVE_MMAP).
We need to request enough bytes from system to ensure
we can malloc nb bytes upon success, so pad with enough space for
top_foot, plus alignment-pad to make sure we don't lose bytes if
not on boundary, and round this up to a granularity unit.
*/
if (SPP_HAVE_MMAP && tbase == cmfail)
{
// Try MMAP
char* mp = (char*)(SPP_CALL_MMAP(asize));
if (mp != cmfail)
{
tbase = mp;
tsize = asize;
mmap_flag = USE_MMAP_BIT;
}
}
if (tbase != cmfail)
{
if ((_footprint += tsize) > _max_footprint)
_max_footprint = _footprint;
if (!is_initialized())
{
// first-time initialization
if (_least_addr == 0 || tbase < _least_addr)
_least_addr = tbase;
_seg._base = tbase;
_seg._size = tsize;
_seg._sflags = mmap_flag;
_magic = mparams._magic;
_release_checks = SPP_MAX_RELEASE_CHECK_RATE;
init_bins();
// Offset top by embedded malloc_state
mchunkptr mn = (mchunkptr)mem2chunk(this)->next_chunk();
init_top(mn, (size_t)((tbase + tsize) - (char*)mn) - top_foot_size());
}
else
{
// Try to merge with an existing segment
msegmentptr sp = &_seg;
// Only consider most recent segment if traversal suppressed
while (sp != 0 && tbase != sp->_base + sp->_size)
sp = (SPP_NO_SEGMENT_TRAVERSAL) ? 0 : sp->_next;
if (sp != 0 &&
!sp->is_extern_segment() &&
(sp->_sflags & USE_MMAP_BIT) == mmap_flag &&
segment_holds(sp, _top))
{
// append
sp->_size += tsize;
init_top(_top, _topsize + tsize);
}
else
{
if (tbase < _least_addr)
_least_addr = tbase;
sp = &_seg;
while (sp != 0 && sp->_base != tbase + tsize)
sp = (SPP_NO_SEGMENT_TRAVERSAL) ? 0 : sp->_next;
if (sp != 0 &&
!sp->is_extern_segment() &&
(sp->_sflags & USE_MMAP_BIT) == mmap_flag)
{
char* oldbase = sp->_base;
sp->_base = tbase;
sp->_size += tsize;
return prepend_alloc(tbase, oldbase, nb);
}
else
add_segment(tbase, tsize, mmap_flag);
}
}
if (nb < _topsize)
{
// Allocate from new or extended top space
size_t rsize = _topsize -= nb;
mchunkptr p = _top;
mchunkptr r = _top = (mchunkptr)p->chunk_plus_offset(nb);
r->_head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(p, nb);
check_top_chunk(_top);
check_malloced_chunk(chunk2mem(p), nb);
return chunk2mem(p);
}
}
SPP_MALLOC_FAILURE_ACTION;
return 0;
}
/* ----------------------- system deallocation -------------------------- */
// Unmap and unlink any mmapped segments that don't contain used chunks
size_t malloc_state::release_unused_segments()
{
size_t released = 0;
int nsegs = 0;
msegmentptr pred = &_seg;
msegmentptr sp = pred->_next;
while (sp != 0)
{
char* base = sp->_base;
size_t size = sp->_size;
msegmentptr next = sp->_next;
++nsegs;
if (sp->is_mmapped_segment() && !sp->is_extern_segment())
{
mchunkptr p = align_as_chunk(base);
size_t psize = p->chunksize();
// Can unmap if first chunk holds entire segment and not pinned
if (!p->is_inuse() && (char*)p + psize >= base + size - top_foot_size())
{
tchunkptr tp = (tchunkptr)p;
assert(segment_holds(sp, p));
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
else
unlink_large_chunk(tp);
if (SPP_CALL_MUNMAP(base, size) == 0)
{
released += size;
_footprint -= size;
// unlink obsoleted record
sp = pred;
sp->_next = next;
}
else
{
// back out if cannot unmap
insert_large_chunk(tp, psize);
}
}
}
if (SPP_NO_SEGMENT_TRAVERSAL) // scan only first segment
break;
pred = sp;
sp = next;
}
// Reset check counter
_release_checks = (((size_t) nsegs > (size_t) SPP_MAX_RELEASE_CHECK_RATE) ?
(size_t) nsegs : (size_t) SPP_MAX_RELEASE_CHECK_RATE);
return released;
}
int malloc_state::sys_trim(size_t pad)
{
size_t released = 0;
mparams.ensure_initialization();
if (pad < MAX_REQUEST && is_initialized())
{
pad += top_foot_size(); // ensure enough room for segment overhead
if (_topsize > pad)
{
// Shrink top space in _granularity - size units, keeping at least one
size_t unit = mparams._granularity;
size_t extra = ((_topsize - pad + (unit - 1)) / unit -
1) * unit;
msegmentptr sp = segment_holding((char*)_top);
if (!sp->is_extern_segment())
{
if (sp->is_mmapped_segment())
{
if (SPP_HAVE_MMAP &&
sp->_size >= extra &&
!has_segment_link(sp))
{
// can't shrink if pinned
size_t newsize = sp->_size - extra;
(void)newsize; // placate people compiling -Wunused-variable
// Prefer mremap, fall back to munmap
if ((SPP_CALL_MREMAP(sp->_base, sp->_size, newsize, 0) != mfail) ||
(SPP_CALL_MUNMAP(sp->_base + newsize, extra) == 0))
released = extra;
}
}
}
if (released != 0)
{
sp->_size -= released;
_footprint -= released;
init_top(_top, _topsize - released);
check_top_chunk(_top);
}
}
// Unmap any unused mmapped segments
if (SPP_HAVE_MMAP)
released += release_unused_segments();
// On failure, disable autotrim to avoid repeated failed future calls
if (released == 0 && _topsize > _trim_check)
_trim_check = spp_max_size_t;
}
return (released != 0) ? 1 : 0;
}
/* Consolidate and bin a chunk. Differs from exported versions
of free mainly in that the chunk need not be marked as inuse.
*/
void malloc_state::dispose_chunk(mchunkptr p, size_t psize)
{
mchunkptr next = (mchunkptr)p->chunk_plus_offset(psize);
if (!p->pinuse())
{
mchunkptr prev;
size_t prevsize = p->_prev_foot;
if (p->is_mmapped())
{
psize += prevsize + SPP_MMAP_FOOT_PAD;
if (SPP_CALL_MUNMAP((char*)p - prevsize, psize) == 0)
_footprint -= psize;
return;
}
prev = (mchunkptr)p->chunk_minus_offset(prevsize);
psize += prevsize;
p = prev;
if (rtcheck(ok_address(prev)))
{
// consolidate backward
if (p != _dv)
unlink_chunk(p, prevsize);
else if ((next->_head & INUSE_BITS) == INUSE_BITS)
{
_dvsize = psize;
p->set_free_with_pinuse(psize, next);
return;
}
}
else
{
SPP_ABORT;
return;
}
}
if (rtcheck(ok_address(next)))
{
if (!next->cinuse())
{
// consolidate forward
if (next == _top)
{
size_t tsize = _topsize += psize;
_top = p;
p->_head = tsize | PINUSE_BIT;
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
return;
}
else if (next == _dv)
{
size_t dsize = _dvsize += psize;
_dv = p;
p->set_size_and_pinuse_of_free_chunk(dsize);
return;
}
else
{
size_t nsize = next->chunksize();
psize += nsize;
unlink_chunk(next, nsize);
p->set_size_and_pinuse_of_free_chunk(psize);
if (p == _dv)
{
_dvsize = psize;
return;
}
}
}
else
p->set_free_with_pinuse(psize, next);
insert_chunk(p, psize);
}
else
SPP_ABORT;
}
/* ---------------------------- malloc --------------------------- */
// allocate a large request from the best fitting chunk in a treebin
void* malloc_state::tmalloc_large(size_t nb)
{
tchunkptr v = 0;
size_t rsize = -nb; // Unsigned negation
tchunkptr t;
bindex_t idx = compute_tree_index(nb);
if ((t = *treebin_at(idx)) != 0)
{
// Traverse tree for this bin looking for node with size == nb
size_t sizebits = nb << leftshift_for_tree_index(idx);
tchunkptr rst = 0; // The deepest untaken right subtree
for (;;)
{
tchunkptr rt;
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
v = t;
if ((rsize = trem) == 0)
break;
}
rt = t->_child[1];
t = t->_child[(sizebits >> (spp_size_t_bitsize - 1)) & 1];
if (rt != 0 && rt != t)
rst = rt;
if (t == 0)
{
t = rst; // set t to least subtree holding sizes > nb
break;
}
sizebits <<= 1;
}
}
if (t == 0 && v == 0)
{
// set t to root of next non-empty treebin
binmap_t leftbits = left_bits(idx2bit(idx)) & _treemap;
if (leftbits != 0)
{
binmap_t leastbit = least_bit(leftbits);
bindex_t i = compute_bit2idx(leastbit);
t = *treebin_at(i);
}
}
while (t != 0)
{
// find smallest of tree or subtree
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
rsize = trem;
v = t;
}
t = t->leftmost_child();
}
// If dv is a better fit, return 0 so malloc will use it
if (v != 0 && rsize < (size_t)(_dvsize - nb))
{
if (rtcheck(ok_address(v)))
{
// split
mchunkptr r = (mchunkptr)v->chunk_plus_offset(nb);
assert(v->chunksize() == rsize + nb);
if (rtcheck(ok_next(v, r)))
{
unlink_large_chunk(v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(v, (rsize + nb));
else
{
set_size_and_pinuse_of_inuse_chunk(v, nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
insert_chunk(r, rsize);
}
return chunk2mem(v);
}
}
SPP_ABORT;
}
return 0;
}
// allocate a small request from the best fitting chunk in a treebin
void* malloc_state::tmalloc_small(size_t nb)
{
tchunkptr t, v;
size_t rsize;
binmap_t leastbit = least_bit(_treemap);
bindex_t i = compute_bit2idx(leastbit);
v = t = *treebin_at(i);
rsize = t->chunksize() - nb;
while ((t = t->leftmost_child()) != 0)
{
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
rsize = trem;
v = t;
}
}
if (rtcheck(ok_address(v)))
{
mchunkptr r = (mchunkptr)v->chunk_plus_offset(nb);
assert(v->chunksize() == rsize + nb);
if (rtcheck(ok_next(v, r)))
{
unlink_large_chunk(v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(v, (rsize + nb));
else
{
set_size_and_pinuse_of_inuse_chunk(v, nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
replace_dv(r, rsize);
}
return chunk2mem(v);
}
}
SPP_ABORT;
return 0;
}
/* ---------------------------- malloc --------------------------- */
void* malloc_state::_malloc(size_t bytes)
{
if (1)
{
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST)
{
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = _smallmap >> idx;
if ((smallbits & 0x3U) != 0)
{
// Remainderless fit to a smallbin.
mchunkptr b, p;
idx += ~smallbits & 1; // Uses next bin if idx empty
b = smallbin_at(idx);
p = b->_fd;
assert(p->chunksize() == small_index2size(idx));
unlink_first_small_chunk(b, p, idx);
set_inuse_and_pinuse(p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (nb > _dvsize)
{
if (smallbits != 0)
{
// Use chunk in next nonempty smallbin
mchunkptr b, p, r;
size_t rsize;
binmap_t leftbits = (smallbits << idx) & left_bits(malloc_state::idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
bindex_t i = compute_bit2idx(leastbit);
b = smallbin_at(i);
p = b->_fd;
assert(p->chunksize() == small_index2size(i));
unlink_first_small_chunk(b, p, i);
rsize = small_index2size(i) - nb;
// Fit here cannot be remainderless if 4byte sizes
if (sizeof(size_t) != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(p, small_index2size(i));
else
{
set_size_and_pinuse_of_inuse_chunk(p, nb);
r = (mchunkptr)p->chunk_plus_offset(nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
replace_dv(r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (_treemap != 0 && (mem = tmalloc_small(nb)) != 0)
{
check_malloced_chunk(mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = spp_max_size_t; // Too big to allocate. Force failure (in sys alloc)
else
{
nb = pad_request(bytes);
if (_treemap != 0 && (mem = tmalloc_large(nb)) != 0)
{
check_malloced_chunk(mem, nb);
goto postaction;
}
}
if (nb <= _dvsize)
{
size_t rsize = _dvsize - nb;
mchunkptr p = _dv;
if (rsize >= MIN_CHUNK_SIZE)
{
// split dv
mchunkptr r = _dv = (mchunkptr)p->chunk_plus_offset(nb);
_dvsize = rsize;
r->set_size_and_pinuse_of_free_chunk(rsize);
set_size_and_pinuse_of_inuse_chunk(p, nb);
}
else // exhaust dv
{
size_t dvs = _dvsize;
_dvsize = 0;
_dv = 0;
set_inuse_and_pinuse(p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (nb < _topsize)
{
// Split top
size_t rsize = _topsize -= nb;
mchunkptr p = _top;
mchunkptr r = _top = (mchunkptr)p->chunk_plus_offset(nb);
r->_head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(p, nb);
mem = chunk2mem(p);
check_top_chunk(_top);
check_malloced_chunk(mem, nb);
goto postaction;
}
mem = sys_alloc(nb);
postaction:
return mem;
}
return 0;
}
/* ---------------------------- free --------------------------- */
void malloc_state::_free(mchunkptr p)
{
if (1)
{
check_inuse_chunk(p);
if (rtcheck(ok_address(p) && ok_inuse(p)))
{
size_t psize = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(psize);
if (!p->pinuse())
{
size_t prevsize = p->_prev_foot;
if (p->is_mmapped())
{
psize += prevsize + SPP_MMAP_FOOT_PAD;
if (SPP_CALL_MUNMAP((char*)p - prevsize, psize) == 0)
_footprint -= psize;
goto postaction;
}
else
{
mchunkptr prev = (mchunkptr)p->chunk_minus_offset(prevsize);
psize += prevsize;
p = prev;
if (rtcheck(ok_address(prev)))
{
// consolidate backward
if (p != _dv)
unlink_chunk(p, prevsize);
else if ((next->_head & INUSE_BITS) == INUSE_BITS)
{
_dvsize = psize;
p->set_free_with_pinuse(psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
if (rtcheck(ok_next(p, next) && ok_pinuse(next)))
{
if (!next->cinuse())
{
// consolidate forward
if (next == _top)
{
size_t tsize = _topsize += psize;
_top = p;
p->_head = tsize | PINUSE_BIT;
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
if (should_trim(tsize))
sys_trim(0);
goto postaction;
}
else if (next == _dv)
{
size_t dsize = _dvsize += psize;
_dv = p;
p->set_size_and_pinuse_of_free_chunk(dsize);
goto postaction;
}
else
{
size_t nsize = next->chunksize();
psize += nsize;
unlink_chunk(next, nsize);
p->set_size_and_pinuse_of_free_chunk(psize);
if (p == _dv)
{
_dvsize = psize;
goto postaction;
}
}
}
else
p->set_free_with_pinuse(psize, next);
if (is_small(psize))
{
insert_small_chunk(p, psize);
check_free_chunk(p);
}
else
{
tchunkptr tp = (tchunkptr)p;
insert_large_chunk(tp, psize);
check_free_chunk(p);
if (--_release_checks == 0)
release_unused_segments();
}
goto postaction;
}
}
erroraction:
SPP_USAGE_ERROR_ACTION(this, p);
postaction:
;
}
}
/* ------------ Internal support for realloc, memalign, etc -------------- */
// Try to realloc; only in-place unless can_move true
mchunkptr malloc_state::try_realloc_chunk(mchunkptr p, size_t nb, int can_move)
{
mchunkptr newp = 0;
size_t oldsize = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(oldsize);
if (rtcheck(ok_address(p) && ok_inuse(p) &&
ok_next(p, next) && ok_pinuse(next)))
{
if (p->is_mmapped())
newp = mmap_resize(p, nb, can_move);
else if (oldsize >= nb)
{
// already big enough
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE)
{
// split off remainder
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(r, rsize);
dispose_chunk(r, rsize);
}
newp = p;
}
else if (next == _top)
{
// extend into top
if (oldsize + _topsize > nb)
{
size_t newsize = oldsize + _topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
newtop->_head = newtopsize | PINUSE_BIT;
_top = newtop;
_topsize = newtopsize;
newp = p;
}
}
else if (next == _dv)
{
// extend into dv
size_t dvs = _dvsize;
if (oldsize + dvs >= nb)
{
size_t dsize = oldsize + dvs - nb;
if (dsize >= MIN_CHUNK_SIZE)
{
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
mchunkptr n = (mchunkptr)r->chunk_plus_offset(dsize);
set_inuse(p, nb);
r->set_size_and_pinuse_of_free_chunk(dsize);
n->clear_pinuse();
_dvsize = dsize;
_dv = r;
}
else
{
// exhaust dv
size_t newsize = oldsize + dvs;
set_inuse(p, newsize);
_dvsize = 0;
_dv = 0;
}
newp = p;
}
}
else if (!next->cinuse())
{
// extend into next free chunk
size_t nextsize = next->chunksize();
if (oldsize + nextsize >= nb)
{
size_t rsize = oldsize + nextsize - nb;
unlink_chunk(next, nextsize);
if (rsize < MIN_CHUNK_SIZE)
{
size_t newsize = oldsize + nextsize;
set_inuse(p, newsize);
}
else
{
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(r, rsize);
dispose_chunk(r, rsize);
}
newp = p;
}
}
}
else
SPP_USAGE_ERROR_ACTION(m, chunk2mem(p));
return newp;
}
void* malloc_state::internal_memalign(size_t alignment, size_t bytes)
{
void* mem = 0;
if (alignment < MIN_CHUNK_SIZE) // must be at least a minimum chunk size
alignment = MIN_CHUNK_SIZE;
if ((alignment & (alignment - 1)) != 0)
{
// Ensure a power of 2
size_t a = SPP_MALLOC_ALIGNMENT << 1;
while (a < alignment)
a <<= 1;
alignment = a;
}
if (bytes >= MAX_REQUEST - alignment)
SPP_MALLOC_FAILURE_ACTION;
else
{
size_t nb = request2size(bytes);
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
mem = internal_malloc(req);
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
if ((((size_t)(mem)) & (alignment - 1)) != 0)
{
// misaligned
/*
Find an aligned spot inside chunk. Since we need to give
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
the first calculation places us at a spot with less than
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
We've allocated enough total room so that this is always
possible.
*/
char* br = (char*)mem2chunk((void *)(((size_t)((char*)mem + alignment - 1)) &
-alignment));
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE) ?
br : br + alignment;
mchunkptr newp = (mchunkptr)pos;
size_t leadsize = pos - (char*)(p);
size_t newsize = p->chunksize() - leadsize;
if (p->is_mmapped())
{
// For mmapped chunks, just adjust offset
newp->_prev_foot = p->_prev_foot + leadsize;
newp->_head = newsize;
}
else
{
// Otherwise, give back leader, use the rest
set_inuse(newp, newsize);
set_inuse(p, leadsize);
dispose_chunk(p, leadsize);
}
p = newp;
}
// Give back spare room at the end
if (!p->is_mmapped())
{
size_t size = p->chunksize();
if (size > nb + MIN_CHUNK_SIZE)
{
size_t remainder_size = size - nb;
mchunkptr remainder = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(remainder, remainder_size);
dispose_chunk(remainder, remainder_size);
}
}
mem = chunk2mem(p);
assert(p->chunksize() >= nb);
assert(((size_t)mem & (alignment - 1)) == 0);
check_inuse_chunk(p);
}
}
return mem;
}
/*
Common support for independent_X routines, handling
all of the combinations that can result.
The opts arg has:
bit 0 set if all elements are same size (using sizes[0])
bit 1 set if elements should be zeroed
*/
void** malloc_state::ialloc(size_t n_elements, size_t* sizes, int opts,
void* chunks[])
{
size_t element_size; // chunksize of each element, if all same
size_t contents_size; // total size of elements
size_t array_size; // request size of pointer array
void* mem; // malloced aggregate space
mchunkptr p; // corresponding chunk
size_t remainder_size; // remaining bytes while splitting
void** marray; // either "chunks" or malloced ptr array
mchunkptr array_chunk; // chunk for malloced ptr array
flag_t was_enabled; // to disable mmap
size_t size;
size_t i;
mparams.ensure_initialization();
// compute array length, if needed
if (chunks != 0)
{
if (n_elements == 0)
return chunks; // nothing to do
marray = chunks;
array_size = 0;
}
else
{
// if empty req, must still return chunk representing empty array
if (n_elements == 0)
return (void**)internal_malloc(0);
marray = 0;
array_size = request2size(n_elements * (sizeof(void*)));
}
// compute total element size
if (opts & 0x1)
{
// all-same-size
element_size = request2size(*sizes);
contents_size = n_elements * element_size;
}
else
{
// add up all the sizes
element_size = 0;
contents_size = 0;
for (i = 0; i != n_elements; ++i)
contents_size += request2size(sizes[i]);
}
size = contents_size + array_size;
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap();
disable_mmap();
mem = internal_malloc(size - CHUNK_OVERHEAD);
if (was_enabled)
enable_mmap();
if (mem == 0)
return 0;
p = mem2chunk(mem);
remainder_size = p->chunksize();
assert(!p->is_mmapped());
if (opts & 0x2)
{
// optionally clear the elements
memset((size_t*)mem, 0, remainder_size - sizeof(size_t) - array_size);
}
// If not provided, allocate the pointer array as final part of chunk
if (marray == 0)
{
size_t array_chunk_size;
array_chunk = (mchunkptr)p->chunk_plus_offset(contents_size);
array_chunk_size = remainder_size - contents_size;
marray = (void**)(chunk2mem(array_chunk));
set_size_and_pinuse_of_inuse_chunk(array_chunk, array_chunk_size);
remainder_size = contents_size;
}
// split out elements
for (i = 0; ; ++i)
{
marray[i] = chunk2mem(p);
if (i != n_elements - 1)
{
if (element_size != 0)
size = element_size;
else
size = request2size(sizes[i]);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(p, size);
p = (mchunkptr)p->chunk_plus_offset(size);
}
else
{
// the final element absorbs any overallocation slop
set_size_and_pinuse_of_inuse_chunk(p, remainder_size);
break;
}
}
#if SPP_DEBUG
if (marray != chunks)
{
// final element must have exactly exhausted chunk
if (element_size != 0)
assert(remainder_size == element_size);
else
assert(remainder_size == request2size(sizes[i]));
check_inuse_chunk(mem2chunk(marray));
}
for (i = 0; i != n_elements; ++i)
check_inuse_chunk(mem2chunk(marray[i]));
#endif
return marray;
}
/* Try to free all pointers in the given array.
Note: this could be made faster, by delaying consolidation,
at the price of disabling some user integrity checks, We
still optimize some consolidations by combining adjacent
chunks before freeing, which will occur often if allocated
with ialloc or the array is sorted.
*/
size_t malloc_state::internal_bulk_free(void* array[], size_t nelem)
{
size_t unfreed = 0;
if (1)
{
void** a;
void** fence = &(array[nelem]);
for (a = array; a != fence; ++a)
{
void* mem = *a;
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
size_t psize = p->chunksize();
#if SPP_FOOTERS
if (get_mstate_for(p) != m)
{
++unfreed;
continue;
}
#endif
check_inuse_chunk(p);
*a = 0;
if (rtcheck(ok_address(p) && ok_inuse(p)))
{
void ** b = a + 1; // try to merge with next chunk
mchunkptr next = (mchunkptr)p->next_chunk();
if (b != fence && *b == chunk2mem(next))
{
size_t newsize = next->chunksize() + psize;
set_inuse(p, newsize);
*b = chunk2mem(p);
}
else
dispose_chunk(p, psize);
}
else
{
SPP_ABORT;
break;
}
}
}
if (should_trim(_topsize))
sys_trim(0);
}
return unfreed;
}
void malloc_state::init(char* tbase, size_t tsize)
{
_seg._base = _least_addr = tbase;
_seg._size = _footprint = _max_footprint = tsize;
_magic = mparams._magic;
_release_checks = SPP_MAX_RELEASE_CHECK_RATE;
_mflags = mparams._default_mflags;
_extp = 0;
_exts = 0;
disable_contiguous();
init_bins();
mchunkptr mn = (mchunkptr)mem2chunk(this)->next_chunk();
init_top(mn, (size_t)((tbase + tsize) - (char*)mn) - top_foot_size());
check_top_chunk(_top);
}
/* Traversal */
#if SPP_MALLOC_INSPECT_ALL
void malloc_state::internal_inspect_all(void(*handler)(void *start, void *end,
size_t used_bytes,
void* callback_arg),
void* arg)
{
if (is_initialized())
{
mchunkptr top = top;
msegmentptr s;
for (s = &seg; s != 0; s = s->next)
{
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) && q->head != FENCEPOST_HEAD)
{
mchunkptr next = (mchunkptr)q->next_chunk();
size_t sz = q->chunksize();
size_t used;
void* start;
if (q->is_inuse())
{
used = sz - CHUNK_OVERHEAD; // must not be mmapped
start = chunk2mem(q);
}
else
{
used = 0;
if (is_small(sz))
{
// offset by possible bookkeeping
start = (void*)((char*)q + sizeof(struct malloc_chunk));
}
else
start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
}
if (start < (void*)next) // skip if all space is bookkeeping
handler(start, next, used, arg);
if (q == top)
break;
q = next;
}
}
}
}
#endif // SPP_MALLOC_INSPECT_ALL
/* ----------------------------- user mspaces ---------------------------- */
static mstate init_user_mstate(char* tbase, size_t tsize)
{
size_t msize = pad_request(sizeof(malloc_state));
mchunkptr msp = align_as_chunk(tbase);
mstate m = (mstate)(chunk2mem(msp));
memset(m, 0, msize);
msp->_head = (msize | INUSE_BITS);
m->init(tbase, tsize);
return m;
}
SPP_API mspace create_mspace(size_t capacity, int locked)
{
mstate m = 0;
size_t msize;
mparams.ensure_initialization();
msize = pad_request(sizeof(malloc_state));
if (capacity < (size_t) - (msize + top_foot_size() + mparams._page_size))
{
size_t rs = ((capacity == 0) ? mparams._granularity :
(capacity + top_foot_size() + msize));
size_t tsize = mparams.granularity_align(rs);
char* tbase = (char*)(SPP_CALL_MMAP(tsize));
if (tbase != cmfail)
{
m = init_user_mstate(tbase, tsize);
m->_seg._sflags = USE_MMAP_BIT;
m->set_lock(locked);
}
}
return (mspace)m;
}
SPP_API size_t destroy_mspace(mspace msp)
{
size_t freed = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
msegmentptr sp = &ms->_seg;
while (sp != 0)
{
char* base = sp->_base;
size_t size = sp->_size;
flag_t flag = sp->_sflags;
(void)base; // placate people compiling -Wunused-variable
sp = sp->_next;
if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
SPP_CALL_MUNMAP(base, size) == 0)
freed += size;
}
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return freed;
}
/* ---------------------------- mspace versions of malloc/calloc/free routines -------------------- */
SPP_API void* mspace_malloc(mspace msp, size_t bytes)
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->_malloc(bytes);
}
SPP_API void mspace_free(mspace msp, void* mem)
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
#if SPP_FOOTERS
mstate fm = get_mstate_for(p);
(void)msp; // placate people compiling -Wunused
#else
mstate fm = (mstate)msp;
#endif
if (!fm->ok_magic())
{
SPP_USAGE_ERROR_ACTION(fm, p);
return;
}
fm->_free(p);
}
}
SPP_API void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size)
{
void* mem;
size_t req = 0;
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (n_elements != 0)
{
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = spp_max_size_t; // force downstream failure on overflow
}
mem = ms->internal_malloc(req);
if (mem != 0 && mem2chunk(mem)->calloc_must_clear())
memset(mem, 0, req);
return mem;
}
SPP_API void* mspace_realloc(mspace msp, void* oldmem, size_t bytes)
{
void* mem = 0;
if (oldmem == 0)
mem = mspace_malloc(msp, bytes);
else if (bytes >= MAX_REQUEST)
SPP_MALLOC_FAILURE_ACTION;
#ifdef REALLOC_ZERO_BYTES_FREES
else if (bytes == 0)
mspace_free(msp, oldmem);
#endif
else
{
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! SPP_FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
if (!m->ok_magic())
{
SPP_USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (1)
{
mchunkptr newp = m->try_realloc_chunk(oldp, nb, 1);
if (newp != 0)
{
m->check_inuse_chunk(newp);
mem = chunk2mem(newp);
}
else
{
mem = mspace_malloc(m, bytes);
if (mem != 0)
{
size_t oc = oldp->chunksize() - oldp->overhead_for();
memcpy(mem, oldmem, (oc < bytes) ? oc : bytes);
mspace_free(m, oldmem);
}
}
}
}
return mem;
}
#if 0
SPP_API mspace create_mspace_with_base(void* base, size_t capacity, int locked)
{
mstate m = 0;
size_t msize;
mparams.ensure_initialization();
msize = pad_request(sizeof(malloc_state));
if (capacity > msize + top_foot_size() &&
capacity < (size_t) - (msize + top_foot_size() + mparams._page_size))
{
m = init_user_mstate((char*)base, capacity);
m->_seg._sflags = EXTERN_BIT;
m->set_lock(locked);
}
return (mspace)m;
}
SPP_API int mspace_track_large_chunks(mspace msp, int enable)
{
int ret = 0;
mstate ms = (mstate)msp;
if (1)
{
if (!ms->use_mmap())
ret = 1;
if (!enable)
ms->enable_mmap();
else
ms->disable_mmap();
}
return ret;
}
SPP_API void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes)
{
void* mem = 0;
if (oldmem != 0)
{
if (bytes >= MAX_REQUEST)
SPP_MALLOC_FAILURE_ACTION;
else
{
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! SPP_FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
(void)msp; // placate people compiling -Wunused
if (!m->ok_magic())
{
SPP_USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (1)
{
mchunkptr newp = m->try_realloc_chunk(oldp, nb, 0);
if (newp == oldp)
{
m->check_inuse_chunk(newp);
mem = oldmem;
}
}
}
}
return mem;
}
SPP_API void* mspace_memalign(mspace msp, size_t alignment, size_t bytes)
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (alignment <= SPP_MALLOC_ALIGNMENT)
return mspace_malloc(msp, bytes);
return ms->internal_memalign(alignment, bytes);
}
SPP_API void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[])
{
size_t sz = elem_size; // serves as 1-element array
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->ialloc(n_elements, &sz, 3, chunks);
}
SPP_API void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[])
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->ialloc(n_elements, sizes, 0, chunks);
}
#endif
SPP_API size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem)
{
return ((mstate)msp)->internal_bulk_free(array, nelem);
}
#if SPP_MALLOC_INSPECT_ALL
SPP_API void mspace_inspect_all(mspace msp,
void(*handler)(void *start,
void *end,
size_t used_bytes,
void* callback_arg),
void* arg)
{
mstate ms = (mstate)msp;
if (ms->ok_magic())
internal_inspect_all(ms, handler, arg);
else
SPP_USAGE_ERROR_ACTION(ms, ms);
}
#endif
SPP_API int mspace_trim(mspace msp, size_t pad)
{
int result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->sys_trim(pad);
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API size_t mspace_footprint(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->_footprint;
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API size_t mspace_max_footprint(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->_max_footprint;
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API size_t mspace_footprint_limit(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
size_t maf = ms->_footprint_limit;
result = (maf == 0) ? spp_max_size_t : maf;
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API size_t mspace_set_footprint_limit(mspace msp, size_t bytes)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
if (bytes == 0)
result = mparams.granularity_align(1); // Use minimal size
if (bytes == spp_max_size_t)
result = 0; // disable
else
result = mparams.granularity_align(bytes);
ms->_footprint_limit = result;
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API size_t mspace_usable_size(const void* mem)
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
if (p->is_inuse())
return p->chunksize() - p->overhead_for();
}
return 0;
}
SPP_API int mspace_mallopt(int param_number, int value)
{
return mparams.change(param_number, value);
}
} // spp_ namespace
#endif // SPP_EXCLUDE_IMPLEMENTATION
#endif // spp_dlalloc__h_