You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
317 lines
10 KiB
317 lines
10 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "sparse.h"
|
|
|
|
template<typename SetterType,typename DenseType, typename Scalar, int Options>
|
|
bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
|
{
|
|
typedef SparseMatrix<Scalar,Options> SparseType;
|
|
{
|
|
sm.setZero();
|
|
SetterType w(sm);
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while(!remaining.empty())
|
|
{
|
|
int i = ei_random<int>(0,remaining.size()-1);
|
|
w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
}
|
|
return sm.isApprox(ref);
|
|
}
|
|
|
|
template<typename SetterType,typename DenseType, typename T>
|
|
bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
|
{
|
|
sm.setZero();
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while(!remaining.empty())
|
|
{
|
|
int i = ei_random<int>(0,remaining.size()-1);
|
|
sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
return sm.isApprox(ref);
|
|
}
|
|
|
|
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
|
|
{
|
|
const int rows = ref.rows();
|
|
const int cols = ref.cols();
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
enum { Flags = SparseMatrixType::Flags };
|
|
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
Scalar eps = 1e-6;
|
|
|
|
SparseMatrixType m(rows, cols);
|
|
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
|
|
|
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
|
|
return;
|
|
|
|
// test coeff and coeffRef
|
|
for (int i=0; i<(int)zeroCoords.size(); ++i)
|
|
{
|
|
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
|
|
if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
/*
|
|
// test InnerIterators and Block expressions
|
|
for (int t=0; t<10; ++t)
|
|
{
|
|
int j = ei_random<int>(0,cols-1);
|
|
int i = ei_random<int>(0,rows-1);
|
|
int w = ei_random<int>(1,cols-j-1);
|
|
int h = ei_random<int>(1,rows-i-1);
|
|
|
|
// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
|
|
for(int c=0; c<w; c++)
|
|
{
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
|
|
for(int r=0; r<h; r++)
|
|
{
|
|
// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
|
|
}
|
|
}
|
|
// for(int r=0; r<h; r++)
|
|
// {
|
|
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
|
|
// for(int c=0; c<w; c++)
|
|
// {
|
|
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
|
|
// }
|
|
// }
|
|
}
|
|
|
|
for(int c=0; c<cols; c++)
|
|
{
|
|
VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
|
|
VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
|
|
}
|
|
|
|
for(int r=0; r<rows; r++)
|
|
{
|
|
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
|
|
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
|
|
}
|
|
*/
|
|
|
|
// test SparseSetters
|
|
// coherent setter
|
|
// TODO extend the MatrixSetter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
|
|
// for (int i=0; i<nonzeroCoords.size(); ++i)
|
|
// {
|
|
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// random setter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
|
|
// std::vector<Vector2i> remaining = nonzeroCoords;
|
|
// while(!remaining.empty())
|
|
// {
|
|
// int i = ei_random<int>(0,remaining.size()-1);
|
|
// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
|
|
// remaining[i] = remaining.back();
|
|
// remaining.pop_back();
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
#ifdef _DENSE_HASH_MAP_H_
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
#ifdef _SPARSE_HASH_MAP_H_
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
|
|
// test fillrand
|
|
{
|
|
DenseMatrix m1(rows,cols);
|
|
m1.setZero();
|
|
SparseMatrixType m2(rows,cols);
|
|
m2.startFill();
|
|
for (int j=0; j<cols; ++j)
|
|
{
|
|
for (int k=0; k<rows/2; ++k)
|
|
{
|
|
int i = ei_random<int>(0,rows-1);
|
|
if (m1.coeff(i,j)==Scalar(0))
|
|
m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>();
|
|
}
|
|
}
|
|
m2.endFill();
|
|
VERIFY_IS_APPROX(m2,m1);
|
|
}
|
|
|
|
// test RandomSetter
|
|
/*{
|
|
SparseMatrixType m1(rows,cols), m2(rows,cols);
|
|
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
|
|
initSparse<Scalar>(density, refM1, m1);
|
|
{
|
|
Eigen::RandomSetter<SparseMatrixType > setter(m2);
|
|
for (int j=0; j<m1.outerSize(); ++j)
|
|
for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
|
|
setter(i.index(), j) = i.value();
|
|
}
|
|
VERIFY_IS_APPROX(m1, m2);
|
|
}*/
|
|
// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// test basic computations
|
|
{
|
|
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m1(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
SparseMatrixType m3(rows, rows);
|
|
SparseMatrixType m4(rows, rows);
|
|
initSparse<Scalar>(density, refM1, m1);
|
|
initSparse<Scalar>(density, refM2, m2);
|
|
initSparse<Scalar>(density, refM3, m3);
|
|
initSparse<Scalar>(density, refM4, m4);
|
|
|
|
VERIFY_IS_APPROX(m1+m2, refM1+refM2);
|
|
VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
|
|
VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
|
|
VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
|
|
|
|
VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
|
|
VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
|
|
|
|
VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
|
|
VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
|
|
|
|
VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0)));
|
|
|
|
refM4.setRandom();
|
|
// sparse cwise* dense
|
|
VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
|
|
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
|
|
}
|
|
|
|
// test innerVector()
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
int j0 = ei_random(0,rows-1);
|
|
int j1 = ei_random(0,rows-1);
|
|
VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
|
|
VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
|
|
//m2.innerVector(j0) = 2*m2.innerVector(j1);
|
|
//refMat2.col(j0) = 2*refMat2.col(j1);
|
|
//VERIFY_IS_APPROX(m2, refMat2);
|
|
}
|
|
|
|
// test innerVectors()
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
int j0 = ei_random(0,rows-2);
|
|
int j1 = ei_random(0,rows-2);
|
|
int n0 = ei_random<int>(1,rows-std::max(j0,j1));
|
|
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
|
|
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
|
|
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
|
|
//m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
|
|
//refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
|
|
}
|
|
|
|
// test transpose
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
|
|
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
|
|
}
|
|
|
|
// test prune
|
|
{
|
|
SparseMatrixType m2(rows, rows);
|
|
DenseMatrix refM2(rows, rows);
|
|
refM2.setZero();
|
|
int countFalseNonZero = 0;
|
|
int countTrueNonZero = 0;
|
|
m2.startFill();
|
|
for (int j=0; j<m2.outerSize(); ++j)
|
|
for (int i=0; i<m2.innerSize(); ++i)
|
|
{
|
|
float x = ei_random<float>(0,1);
|
|
if (x<0.1)
|
|
{
|
|
// do nothing
|
|
}
|
|
else if (x<0.5)
|
|
{
|
|
countFalseNonZero++;
|
|
m2.fill(i,j) = Scalar(0);
|
|
}
|
|
else
|
|
{
|
|
countTrueNonZero++;
|
|
m2.fill(i,j) = refM2(i,j) = Scalar(1);
|
|
}
|
|
}
|
|
m2.endFill();
|
|
VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
|
|
VERIFY_IS_APPROX(m2, refM2);
|
|
m2.prune(1);
|
|
VERIFY(countTrueNonZero==m2.nonZeros());
|
|
VERIFY_IS_APPROX(m2, refM2);
|
|
}
|
|
}
|
|
|
|
void test_eigen2_sparse_basic()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) );
|
|
CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) );
|
|
CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) );
|
|
|
|
CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) );
|
|
}
|
|
}
|