You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							401 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							401 lines
						
					
					
						
							13 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
							 | 
						|
								{
							 | 
						|
								  typedef typename SparseMatrixType::Index Index;
							 | 
						|
								
							 | 
						|
								  const Index rows = ref.rows();
							 | 
						|
								  const Index cols = ref.cols();
							 | 
						|
								  typedef typename SparseMatrixType::Scalar Scalar;
							 | 
						|
								  enum { Flags = SparseMatrixType::Flags };
							 | 
						|
								
							 | 
						|
								  double density = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  Scalar eps = 1e-6;
							 | 
						|
								
							 | 
						|
								  SparseMatrixType m(rows, cols);
							 | 
						|
								  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
							 | 
						|
								  DenseVector vec1 = DenseVector::Random(rows);
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  std::vector<Vector2i> zeroCoords;
							 | 
						|
								  std::vector<Vector2i> nonzeroCoords;
							 | 
						|
								  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
							 | 
						|
								
							 | 
						|
								  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
							 | 
						|
								    return;
							 | 
						|
								
							 | 
						|
								  // test coeff and coeffRef
							 | 
						|
								  for (int i=0; i<(int)zeroCoords.size(); ++i)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
							 | 
						|
								    if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
							 | 
						|
								      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
							 | 
						|
								  }
							 | 
						|
								  VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								  /*
							 | 
						|
								  // test InnerIterators and Block expressions
							 | 
						|
								  for (int t=0; t<10; ++t)
							 | 
						|
								  {
							 | 
						|
								    int j = internal::random<int>(0,cols-1);
							 | 
						|
								    int i = internal::random<int>(0,rows-1);
							 | 
						|
								    int w = internal::random<int>(1,cols-j-1);
							 | 
						|
								    int h = internal::random<int>(1,rows-i-1);
							 | 
						|
								
							 | 
						|
								//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
							 | 
						|
								    for(int c=0; c<w; c++)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
							 | 
						|
								      for(int r=0; r<h; r++)
							 | 
						|
								      {
							 | 
						|
								//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								//     for(int r=0; r<h; r++)
							 | 
						|
								//     {
							 | 
						|
								//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
							 | 
						|
								//       for(int c=0; c<w; c++)
							 | 
						|
								//       {
							 | 
						|
								//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
							 | 
						|
								//       }
							 | 
						|
								//     }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int c=0; c<cols; c++)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
							 | 
						|
								    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int r=0; r<rows; r++)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
							 | 
						|
								    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
							 | 
						|
								  }
							 | 
						|
								  */
							 | 
						|
								
							 | 
						|
								    // test insert (inner random)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      if(internal::random<int>()%2)
							 | 
						|
								        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
							 | 
						|
								      for (int j=0; j<cols; ++j)
							 | 
						|
								      {
							 | 
						|
								        for (int k=0; k<rows/2; ++k)
							 | 
						|
								        {
							 | 
						|
								          int i = internal::random<int>(0,rows-1);
							 | 
						|
								          if (m1.coeff(i,j)==Scalar(0))
							 | 
						|
								            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      m2.finalize();
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test insert (fully random)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      if(internal::random<int>()%2)
							 | 
						|
								        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
							 | 
						|
								      for (int k=0; k<rows*cols; ++k)
							 | 
						|
								      {
							 | 
						|
								        int i = internal::random<int>(0,rows-1);
							 | 
						|
								        int j = internal::random<int>(0,cols-1);
							 | 
						|
								        if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
							 | 
						|
								          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          Scalar v = internal::random<Scalar>();
							 | 
						|
								          m2.coeffRef(i,j) += v;
							 | 
						|
								          m1(i,j) += v;
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    // test insert (un-compressed)
							 | 
						|
								    for(int mode=0;mode<4;++mode)
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
							 | 
						|
								      m2.reserve(r);
							 | 
						|
								      for (int k=0; k<rows*cols; ++k)
							 | 
						|
								      {
							 | 
						|
								        int i = internal::random<int>(0,rows-1);
							 | 
						|
								        int j = internal::random<int>(0,cols-1);
							 | 
						|
								        if (m1.coeff(i,j)==Scalar(0))
							 | 
						|
								          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
							 | 
						|
								        if(mode==3)
							 | 
						|
								          m2.reserve(r);
							 | 
						|
								      }
							 | 
						|
								      if(internal::random<int>()%2)
							 | 
						|
								        m2.makeCompressed();
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								  // test basic computations
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m1(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    SparseMatrixType m3(rows, rows);
							 | 
						|
								    SparseMatrixType m4(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refM1, m1);
							 | 
						|
								    initSparse<Scalar>(density, refM2, m2);
							 | 
						|
								    initSparse<Scalar>(density, refM3, m3);
							 | 
						|
								    initSparse<Scalar>(density, refM4, m4);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
							 | 
						|
								    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
							 | 
						|
								    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
							 | 
						|
								
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
							 | 
						|
								    VERIFY_IS_APPROX(m1.real(), refM1.real());
							 | 
						|
								
							 | 
						|
								    refM4.setRandom();
							 | 
						|
								    // sparse cwise* dense
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
							 | 
						|
								//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
							 | 
						|
								
							 | 
						|
								    // test aliasing
							 | 
						|
								    VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
							 | 
						|
								    VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
							 | 
						|
								    VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
							 | 
						|
								    VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test transpose
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test innerVector()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    int j0 = internal::random<int>(0,rows-1);
							 | 
						|
								    int j1 = internal::random<int>(0,rows-1);
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
							 | 
						|
								
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
							 | 
						|
								
							 | 
						|
								    SparseMatrixType m3(rows,rows);
							 | 
						|
								    m3.reserve(VectorXi::Constant(rows,rows/2));
							 | 
						|
								    for(int j=0; j<rows; ++j)
							 | 
						|
								      for(int k=0; k<j; ++k)
							 | 
						|
								        m3.insertByOuterInner(j,k) = k+1;
							 | 
						|
								    for(int j=0; j<rows; ++j)
							 | 
						|
								    {
							 | 
						|
								      VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
							 | 
						|
								      if(j>0)
							 | 
						|
								        VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
							 | 
						|
								    }
							 | 
						|
								    m3.makeCompressed();
							 | 
						|
								    for(int j=0; j<rows; ++j)
							 | 
						|
								    {
							 | 
						|
								      VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
							 | 
						|
								      if(j>0)
							 | 
						|
								        VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    //m2.innerVector(j0) = 2*m2.innerVector(j1);
							 | 
						|
								    //refMat2.col(j0) = 2*refMat2.col(j1);
							 | 
						|
								    //VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test innerVectors()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    int j0 = internal::random<int>(0,rows-2);
							 | 
						|
								    int j1 = internal::random<int>(0,rows-2);
							 | 
						|
								    int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
							 | 
						|
								                      refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
							 | 
						|
								                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
							 | 
						|
								    //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
							 | 
						|
								    //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test prune
							 | 
						|
								  {
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    DenseMatrix refM2(rows, rows);
							 | 
						|
								    refM2.setZero();
							 | 
						|
								    int countFalseNonZero = 0;
							 | 
						|
								    int countTrueNonZero = 0;
							 | 
						|
								    for (int j=0; j<m2.outerSize(); ++j)
							 | 
						|
								    {
							 | 
						|
								      m2.startVec(j);
							 | 
						|
								      for (int i=0; i<m2.innerSize(); ++i)
							 | 
						|
								      {
							 | 
						|
								        float x = internal::random<float>(0,1);
							 | 
						|
								        if (x<0.1)
							 | 
						|
								        {
							 | 
						|
								          // do nothing
							 | 
						|
								        }
							 | 
						|
								        else if (x<0.5)
							 | 
						|
								        {
							 | 
						|
								          countFalseNonZero++;
							 | 
						|
								          m2.insertBackByOuterInner(j,i) = Scalar(0);
							 | 
						|
								        }
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          countTrueNonZero++;
							 | 
						|
								          m2.insertBackByOuterInner(j,i) = Scalar(1);
							 | 
						|
								          if(SparseMatrixType::IsRowMajor)
							 | 
						|
								            refM2(j,i) = Scalar(1);
							 | 
						|
								          else
							 | 
						|
								            refM2(i,j) = Scalar(1);
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    m2.finalize();
							 | 
						|
								    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
							 | 
						|
								    VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								    m2.prune(Scalar(1));
							 | 
						|
								    VERIFY(countTrueNonZero==m2.nonZeros());
							 | 
						|
								    VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test setFromTriplets
							 | 
						|
								  {
							 | 
						|
								    typedef Triplet<Scalar,Index> TripletType;
							 | 
						|
								    std::vector<TripletType> triplets;
							 | 
						|
								    int ntriplets = rows*cols;
							 | 
						|
								    triplets.reserve(ntriplets);
							 | 
						|
								    DenseMatrix refMat(rows,cols);
							 | 
						|
								    refMat.setZero();
							 | 
						|
								    for(int i=0;i<ntriplets;++i)
							 | 
						|
								    {
							 | 
						|
								      int r = internal::random<int>(0,rows-1);
							 | 
						|
								      int c = internal::random<int>(0,cols-1);
							 | 
						|
								      Scalar v = internal::random<Scalar>();
							 | 
						|
								      triplets.push_back(TripletType(r,c,v));
							 | 
						|
								      refMat(r,c) += v;
							 | 
						|
								    }
							 | 
						|
								    SparseMatrixType m(rows,cols);
							 | 
						|
								    m.setFromTriplets(triplets.begin(), triplets.end());
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test triangularView
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows), m3(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    refMat3 = refMat2.template triangularView<Lower>();
							 | 
						|
								    m3 = m2.template triangularView<Lower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<Upper>();
							 | 
						|
								    m3 = m2.template triangularView<Upper>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<UnitUpper>();
							 | 
						|
								    m3 = m2.template triangularView<UnitUpper>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								
							 | 
						|
								    refMat3 = refMat2.template triangularView<UnitLower>();
							 | 
						|
								    m3 = m2.template triangularView<UnitLower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test selfadjointView
							 | 
						|
								  if(!SparseMatrixType::IsRowMajor)
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows), m3(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    refMat3 = refMat2.template selfadjointView<Lower>();
							 | 
						|
								    m3 = m2.template selfadjointView<Lower>();
							 | 
						|
								    VERIFY_IS_APPROX(m3, refMat3);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test sparseView
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test diagonal
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_sparse_basic()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    int s = Eigen::internal::random<int>(1,50);
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
							 | 
						|
								  }
							 | 
						|
								}
							 |