You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void triangular(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  RealScalar largerEps = 10*test_precision<RealScalar>();
							 | 
						|
								
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols),
							 | 
						|
								             m4(rows, cols),
							 | 
						|
								             r1(rows, cols),
							 | 
						|
								             r2(rows, cols),
							 | 
						|
								             mzero = MatrixType::Zero(rows, cols),
							 | 
						|
								             mones = MatrixType::Ones(rows, cols),
							 | 
						|
								             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
							 | 
						|
								                              ::Identity(rows, rows),
							 | 
						|
								             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
							 | 
						|
								                              ::Random(rows, rows);
							 | 
						|
								  VectorType v1 = VectorType::Random(rows),
							 | 
						|
								             v2 = VectorType::Random(rows),
							 | 
						|
								             vzero = VectorType::Zero(rows);
							 | 
						|
								
							 | 
						|
								  MatrixType m1up = m1.template part<Eigen::UpperTriangular>();
							 | 
						|
								  MatrixType m2up = m2.template part<Eigen::UpperTriangular>();
							 | 
						|
								
							 | 
						|
								  if (rows*cols>1)
							 | 
						|
								  {
							 | 
						|
								    VERIFY(m1up.isUpperTriangular());
							 | 
						|
								    VERIFY(m2up.transpose().isLowerTriangular());
							 | 
						|
								    VERIFY(!m2.isLowerTriangular());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								//   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
							 | 
						|
								
							 | 
						|
								  // test overloaded operator+=
							 | 
						|
								  r1.setZero();
							 | 
						|
								  r2.setZero();
							 | 
						|
								  r1.template part<Eigen::UpperTriangular>() +=  m1;
							 | 
						|
								  r2 += m1up;
							 | 
						|
								  VERIFY_IS_APPROX(r1,r2);
							 | 
						|
								
							 | 
						|
								  // test overloaded operator=
							 | 
						|
								  m1.setZero();
							 | 
						|
								  m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy();
							 | 
						|
								  m3 = m2.transpose() * m2;
							 | 
						|
								  VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1);
							 | 
						|
								
							 | 
						|
								  // test overloaded operator=
							 | 
						|
								  m1.setZero();
							 | 
						|
								  m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy();
							 | 
						|
								  VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal());
							 | 
						|
								
							 | 
						|
								  m1 = MatrixType::Random(rows, cols);
							 | 
						|
								  for (int i=0; i<rows; ++i)
							 | 
						|
								    while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>();
							 | 
						|
								
							 | 
						|
								  Transpose<MatrixType> trm4(m4);
							 | 
						|
								  // test back and forward subsitution
							 | 
						|
								  m3 = m1.template part<Eigen::LowerTriangular>();
							 | 
						|
								  VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								  VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>()
							 | 
						|
								    .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								  // check M * inv(L) using in place API
							 | 
						|
								  m4 = m3;
							 | 
						|
								  m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4);
							 | 
						|
								  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								
							 | 
						|
								  m3 = m1.template part<Eigen::UpperTriangular>();
							 | 
						|
								  VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								  VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>()
							 | 
						|
								    .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								  // check M * inv(U) using in place API
							 | 
						|
								  m4 = m3;
							 | 
						|
								  m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4);
							 | 
						|
								  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
							 | 
						|
								
							 | 
						|
								  m3 = m1.template part<Eigen::UpperTriangular>();
							 | 
						|
								  VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps));
							 | 
						|
								  m3 = m1.template part<Eigen::LowerTriangular>();
							 | 
						|
								  VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps));
							 | 
						|
								
							 | 
						|
								  VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular());
							 | 
						|
								
							 | 
						|
								  // test swap
							 | 
						|
								  m1.setOnes();
							 | 
						|
								  m2.setZero();
							 | 
						|
								  m2.template part<Eigen::UpperTriangular>().swap(m1);
							 | 
						|
								  m3.setZero();
							 | 
						|
								  m3.template part<Eigen::UpperTriangular>().setOnes();
							 | 
						|
								  VERIFY_IS_APPROX(m2,m3);
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void selfadjoint()
							 | 
						|
								{
							 | 
						|
								  Matrix2i m;
							 | 
						|
								  m << 1, 2,
							 | 
						|
								       3, 4;
							 | 
						|
								
							 | 
						|
								  Matrix2i m1 = Matrix2i::Zero();
							 | 
						|
								  m1.part<SelfAdjoint>() = m;
							 | 
						|
								  Matrix2i ref1;
							 | 
						|
								  ref1 << 1, 2,
							 | 
						|
								          2, 4;
							 | 
						|
								  VERIFY(m1 == ref1);
							 | 
						|
								  
							 | 
						|
								  Matrix2i m2 = Matrix2i::Zero();
							 | 
						|
								  m2.part<SelfAdjoint>() = m.part<UpperTriangular>();
							 | 
						|
								  Matrix2i ref2;
							 | 
						|
								  ref2 << 1, 2,
							 | 
						|
								          2, 4;
							 | 
						|
								  VERIFY(m2 == ref2);
							 | 
						|
								 
							 | 
						|
								  Matrix2i m3 = Matrix2i::Zero();
							 | 
						|
								  m3.part<SelfAdjoint>() = m.part<LowerTriangular>();
							 | 
						|
								  Matrix2i ref3;
							 | 
						|
								  ref3 << 1, 0,
							 | 
						|
								          0, 4;
							 | 
						|
								  VERIFY(m3 == ref3);
							 | 
						|
								  
							 | 
						|
								  // example inspired from bug 159
							 | 
						|
								  int array[] = {1, 2, 3, 4};
							 | 
						|
								  Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>();
							 | 
						|
								  
							 | 
						|
								  std::cout << "hello\n" << array << std::endl;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_triangular()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_8( selfadjoint() );
							 | 
						|
								  for(int i = 0; i < g_repeat ; i++) {
							 | 
						|
								    CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) );
							 | 
						|
								    CALL_SUBTEST_3( triangular(Matrix3d()) );
							 | 
						|
								    CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) );
							 | 
						|
								    CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) );
							 | 
						|
								    CALL_SUBTEST_6( triangular(MatrixXd(17,17)) );
							 | 
						|
								    CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |