You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							200 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							200 lines
						
					
					
						
							7.0 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void
							 | 
						|
								initSPD(double density,
							 | 
						|
								        Matrix<Scalar,Dynamic,Dynamic>& refMat,
							 | 
						|
								        SparseMatrix<Scalar>& sparseMat)
							 | 
						|
								{
							 | 
						|
								  Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols());
							 | 
						|
								  initSparse(density,refMat,sparseMat);
							 | 
						|
								  refMat = refMat * refMat.adjoint();
							 | 
						|
								  for (int k=0; k<2; ++k)
							 | 
						|
								  {
							 | 
						|
								    initSparse(density,aux,sparseMat,ForceNonZeroDiag);
							 | 
						|
								    refMat += aux * aux.adjoint();
							 | 
						|
								  }
							 | 
						|
								  sparseMat.startFill();
							 | 
						|
								  for (int j=0 ; j<sparseMat.cols(); ++j)
							 | 
						|
								    for (int i=j ; i<sparseMat.rows(); ++i)
							 | 
						|
								      if (refMat(i,j)!=Scalar(0))
							 | 
						|
								        sparseMat.fill(i,j) = refMat(i,j);
							 | 
						|
								  sparseMat.endFill();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void sparse_solvers(int rows, int cols)
							 | 
						|
								{
							 | 
						|
								  double density = std::max(8./(rows*cols), 0.01);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  // Scalar eps = 1e-6;
							 | 
						|
								
							 | 
						|
								  DenseVector vec1 = DenseVector::Random(rows);
							 | 
						|
								
							 | 
						|
								  std::vector<Vector2i> zeroCoords;
							 | 
						|
								  std::vector<Vector2i> nonzeroCoords;
							 | 
						|
								
							 | 
						|
								  // test triangular solver
							 | 
						|
								  {
							 | 
						|
								    DenseVector vec2 = vec1, vec3 = vec1;
							 | 
						|
								    SparseMatrix<Scalar> m2(rows, cols);
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								
							 | 
						|
								    // lower
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
							 | 
						|
								    VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2),
							 | 
						|
								                     m2.template marked<LowerTriangular>().solveTriangular(vec3));
							 | 
						|
								
							 | 
						|
								    // lower - transpose
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
							 | 
						|
								    VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2),
							 | 
						|
								                     m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3));
							 | 
						|
								
							 | 
						|
								    // upper
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
							 | 
						|
								    VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2),
							 | 
						|
								                     m2.template marked<UpperTriangular>().solveTriangular(vec3));
							 | 
						|
								
							 | 
						|
								    // upper - transpose
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
							 | 
						|
								    VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2),
							 | 
						|
								                     m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test LLT
							 | 
						|
								  {
							 | 
						|
								    // TODO fix the issue with complex (see SparseLLT::solveInPlace)
							 | 
						|
								    SparseMatrix<Scalar> m2(rows, cols);
							 | 
						|
								    DenseMatrix refMat2(rows, cols);
							 | 
						|
								
							 | 
						|
								    DenseVector b = DenseVector::Random(cols);
							 | 
						|
								    DenseVector refX(cols), x(cols);
							 | 
						|
								
							 | 
						|
								    initSPD(density, refMat2, m2);
							 | 
						|
								
							 | 
						|
								    refMat2.llt().solve(b, &refX);
							 | 
						|
								    typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
							 | 
						|
								    if (!NumTraits<Scalar>::IsComplex)
							 | 
						|
								    {
							 | 
						|
								      x = b;
							 | 
						|
								      SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
							 | 
						|
								      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
							 | 
						|
								    }
							 | 
						|
								    #ifdef EIGEN_CHOLMOD_SUPPORT
							 | 
						|
								    x = b;
							 | 
						|
								    SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
							 | 
						|
								    VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
							 | 
						|
								    #endif
							 | 
						|
								    if (!NumTraits<Scalar>::IsComplex)
							 | 
						|
								    {
							 | 
						|
								      #ifdef EIGEN_TAUCS_SUPPORT
							 | 
						|
								      x = b;
							 | 
						|
								      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
							 | 
						|
								      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
							 | 
						|
								      x = b;
							 | 
						|
								      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
							 | 
						|
								      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
							 | 
						|
								      x = b;
							 | 
						|
								      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
							 | 
						|
								      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
							 | 
						|
								      #endif
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test LDLT
							 | 
						|
								  if (!NumTraits<Scalar>::IsComplex)
							 | 
						|
								  {
							 | 
						|
								    // TODO fix the issue with complex (see SparseLDLT::solveInPlace)
							 | 
						|
								    SparseMatrix<Scalar> m2(rows, cols);
							 | 
						|
								    DenseMatrix refMat2(rows, cols);
							 | 
						|
								
							 | 
						|
								    DenseVector b = DenseVector::Random(cols);
							 | 
						|
								    DenseVector refX(cols), x(cols);
							 | 
						|
								
							 | 
						|
								    //initSPD(density, refMat2, m2);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
							 | 
						|
								    refMat2 += refMat2.adjoint();
							 | 
						|
								    refMat2.diagonal() *= 0.5;
							 | 
						|
								
							 | 
						|
								    refMat2.ldlt().solve(b, &refX);
							 | 
						|
								    typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
							 | 
						|
								    x = b;
							 | 
						|
								    SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
							 | 
						|
								    if (ldlt.succeeded())
							 | 
						|
								      ldlt.solveInPlace(x);
							 | 
						|
								    VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test LU
							 | 
						|
								  {
							 | 
						|
								    static int count = 0;
							 | 
						|
								    SparseMatrix<Scalar> m2(rows, cols);
							 | 
						|
								    DenseMatrix refMat2(rows, cols);
							 | 
						|
								
							 | 
						|
								    DenseVector b = DenseVector::Random(cols);
							 | 
						|
								    DenseVector refX(cols), x(cols);
							 | 
						|
								
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
							 | 
						|
								
							 | 
						|
								    LU<DenseMatrix> refLu(refMat2);
							 | 
						|
								    refLu.solve(b, &refX);
							 | 
						|
								    #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
							 | 
						|
								    Scalar refDet = refLu.determinant();
							 | 
						|
								    #endif
							 | 
						|
								    x.setZero();
							 | 
						|
								    // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
							 | 
						|
								    // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
							 | 
						|
								    #ifdef EIGEN_SUPERLU_SUPPORT
							 | 
						|
								    {
							 | 
						|
								      x.setZero();
							 | 
						|
								      SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
							 | 
						|
								      if (slu.succeeded())
							 | 
						|
								      {
							 | 
						|
								        if (slu.solve(b,&x)) {
							 | 
						|
								          VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
							 | 
						|
								        }
							 | 
						|
								        // std::cerr << refDet << " == " << slu.determinant() << "\n";
							 | 
						|
								        if (count==0) {
							 | 
						|
								          VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    #endif
							 | 
						|
								    #ifdef EIGEN_UMFPACK_SUPPORT
							 | 
						|
								    {
							 | 
						|
								      // check solve
							 | 
						|
								      x.setZero();
							 | 
						|
								      SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
							 | 
						|
								      if (slu.succeeded()) {
							 | 
						|
								        if (slu.solve(b,&x)) {
							 | 
						|
								          if (count==0) {
							 | 
						|
								            VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");  // FIXME solve is not very stable for complex
							 | 
						|
								          }
							 | 
						|
								        }
							 | 
						|
								        VERIFY_IS_APPROX(refDet,slu.determinant());
							 | 
						|
								        // TODO check the extracted data
							 | 
						|
								        //std::cerr << slu.matrixL() << "\n";
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    #endif
							 | 
						|
								    count++;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_sparse_solvers()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( sparse_solvers<double>(8, 8) );
							 | 
						|
								    CALL_SUBTEST_2( sparse_solvers<std::complex<double> >(16, 16) );
							 | 
						|
								    CALL_SUBTEST_1( sparse_solvers<double>(101, 101) );
							 | 
						|
								  }
							 | 
						|
								}
							 |