You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							136 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							136 lines
						
					
					
						
							5.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/LeastSquares>
							 | 
						|
								
							 | 
						|
								template<typename VectorType,
							 | 
						|
								         typename HyperplaneType>
							 | 
						|
								void makeNoisyCohyperplanarPoints(int numPoints,
							 | 
						|
								                                  VectorType **points,
							 | 
						|
								                                  HyperplaneType *hyperplane,
							 | 
						|
								                                  typename VectorType::Scalar noiseAmplitude)
							 | 
						|
								{
							 | 
						|
								  typedef typename VectorType::Scalar Scalar;
							 | 
						|
								  const int size = points[0]->size();
							 | 
						|
								  // pick a random hyperplane, store the coefficients of its equation
							 | 
						|
								  hyperplane->coeffs().resize(size + 1);
							 | 
						|
								  for(int j = 0; j < size + 1; j++)
							 | 
						|
								  {
							 | 
						|
								    do {
							 | 
						|
								      hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>();
							 | 
						|
								    } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // now pick numPoints random points on this hyperplane
							 | 
						|
								  for(int i = 0; i < numPoints; i++)
							 | 
						|
								  {
							 | 
						|
								    VectorType& cur_point = *(points[i]);
							 | 
						|
								    do
							 | 
						|
								    {
							 | 
						|
								      cur_point = VectorType::Random(size)/*.normalized()*/;
							 | 
						|
								      // project cur_point onto the hyperplane
							 | 
						|
								      Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum();
							 | 
						|
								      cur_point *= hyperplane->coeffs().coeff(size) / x;
							 | 
						|
								    } while( cur_point.norm() < 0.5
							 | 
						|
								          || cur_point.norm() > 2.0 );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // add some noise to these points
							 | 
						|
								  for(int i = 0; i < numPoints; i++ )
							 | 
						|
								    *(points[i]) += noiseAmplitude * VectorType::Random(size);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename VectorType>
							 | 
						|
								void check_linearRegression(int numPoints,
							 | 
						|
								                            VectorType **points,
							 | 
						|
								                            const VectorType& original,
							 | 
						|
								                            typename VectorType::Scalar tolerance)
							 | 
						|
								{
							 | 
						|
								  int size = points[0]->size();
							 | 
						|
								  assert(size==2);
							 | 
						|
								  VectorType result(size);
							 | 
						|
								  linearRegression(numPoints, points, &result, 1);
							 | 
						|
								  typename VectorType::Scalar error = (result - original).norm() / original.norm();
							 | 
						|
								  VERIFY(ei_abs(error) < ei_abs(tolerance));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename VectorType,
							 | 
						|
								         typename HyperplaneType>
							 | 
						|
								void check_fitHyperplane(int numPoints,
							 | 
						|
								                         VectorType **points,
							 | 
						|
								                         const HyperplaneType& original,
							 | 
						|
								                         typename VectorType::Scalar tolerance)
							 | 
						|
								{
							 | 
						|
								  int size = points[0]->size();
							 | 
						|
								  HyperplaneType result(size);
							 | 
						|
								  fitHyperplane(numPoints, points, &result);
							 | 
						|
								  result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size);
							 | 
						|
								  typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm();
							 | 
						|
								  std::cout << ei_abs(error) << "  xxx   " << ei_abs(tolerance) << std::endl;
							 | 
						|
								  VERIFY(ei_abs(error) < ei_abs(tolerance));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_regression()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++)
							 | 
						|
								  {
							 | 
						|
								#ifdef EIGEN_TEST_PART_1
							 | 
						|
								    {
							 | 
						|
								      Vector2f points2f [1000];
							 | 
						|
								      Vector2f *points2f_ptrs [1000];
							 | 
						|
								      for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
							 | 
						|
								      Vector2f coeffs2f;
							 | 
						|
								      Hyperplane<float,2> coeffs3f;
							 | 
						|
								      makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
							 | 
						|
								      coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1];
							 | 
						|
								      coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1];
							 | 
						|
								      CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f));
							 | 
						|
								      CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f));
							 | 
						|
								      CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f));
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								#ifdef EIGEN_TEST_PART_2
							 | 
						|
								    {
							 | 
						|
								      Vector2f points2f [1000];
							 | 
						|
								      Vector2f *points2f_ptrs [1000];
							 | 
						|
								      for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
							 | 
						|
								      Hyperplane<float,2> coeffs3f;
							 | 
						|
								      makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f));
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f));
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f));
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								#ifdef EIGEN_TEST_PART_3
							 | 
						|
								    {
							 | 
						|
								      Vector4d points4d [1000];
							 | 
						|
								      Vector4d *points4d_ptrs [1000];
							 | 
						|
								      for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
							 | 
						|
								      Hyperplane<double,4> coeffs5d;
							 | 
						|
								      makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05));
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01));
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002));
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								#ifdef EIGEN_TEST_PART_4
							 | 
						|
								    {
							 | 
						|
								      VectorXcd *points11cd_ptrs[1000];
							 | 
						|
								      for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
							 | 
						|
								      Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11);
							 | 
						|
								      makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025));
							 | 
						|
								      CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006));
							 | 
						|
								      delete coeffs12cd;
							 | 
						|
								      for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i];
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								  }
							 | 
						|
								}
							 |