You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							142 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							142 lines
						
					
					
						
							5.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/Array>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void array(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     Array.cpp
							 | 
						|
								  */
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  Scalar  s1 = ei_random<Scalar>(),
							 | 
						|
								          s2 = ei_random<Scalar>();
							 | 
						|
								
							 | 
						|
								  // scalar addition
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
							 | 
						|
								  VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.cwise() += s2;
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1.cwise() + s2);
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.cwise() -= s1;
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1.cwise() - s1);
							 | 
						|
								
							 | 
						|
								  // reductions
							 | 
						|
								  VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
							 | 
						|
								  VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
							 | 
						|
								  if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
							 | 
						|
								    VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
							 | 
						|
								  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void comparisons(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  int r = ei_random<int>(0, rows-1),
							 | 
						|
								      c = ei_random<int>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all());
							 | 
						|
								  VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all());
							 | 
						|
								  if (rows*cols>1)
							 | 
						|
								  {
							 | 
						|
								    m3 = m1;
							 | 
						|
								    m3(r,c) += 1;
							 | 
						|
								    VERIFY(! (m1.cwise() < m3).all() );
							 | 
						|
								    VERIFY(! (m1.cwise() > m3).all() );
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // comparisons to scalar
							 | 
						|
								  VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() );
							 | 
						|
								  VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() );
							 | 
						|
								  VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() );
							 | 
						|
								  VERIFY( (m1.cwise() == m1(r,c) ).any() );
							 | 
						|
								  
							 | 
						|
								  // test Select
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise()<m2).select(m1,m2), m1.cwise().min(m2) );
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise()>m2).select(m1,m2), m1.cwise().max(m2) );
							 | 
						|
								  Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2);
							 | 
						|
								  for (int j=0; j<cols; ++j)
							 | 
						|
								  for (int i=0; i<rows; ++i)
							 | 
						|
								    m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
							 | 
						|
								                        .select(MatrixType::Zero(rows,cols),m1), m3);
							 | 
						|
								  // shorter versions:
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
							 | 
						|
								                        .select(0,m1), m3);
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()>=MatrixType::Constant(rows,cols,mid))
							 | 
						|
								                        .select(m1,0), m3);
							 | 
						|
								  // even shorter version:
							 | 
						|
								  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
							 | 
						|
								  
							 | 
						|
								  // count
							 | 
						|
								  VERIFY(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).count() == rows*cols);
							 | 
						|
								  VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast<int>(), RowVectorXi::Constant(cols,rows));
							 | 
						|
								  VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast<int>(), VectorXi::Constant(rows, cols));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename VectorType> void lpNorm(const VectorType& v)
							 | 
						|
								{
							 | 
						|
								  VectorType u = VectorType::Random(v.size());
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff());
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum());
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum()));
							 | 
						|
								  VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_array()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( array(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( array(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_4( array(MatrixXcf(3, 3)) );
							 | 
						|
								    CALL_SUBTEST_5( array(MatrixXf(8, 12)) );
							 | 
						|
								    CALL_SUBTEST_6( array(MatrixXi(8, 12)) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( comparisons(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( comparisons(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
							 | 
						|
								    CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( lpNorm(Vector2f()) );
							 | 
						|
								    CALL_SUBTEST_3( lpNorm(Vector3d()) );
							 | 
						|
								    CALL_SUBTEST_4( lpNorm(Vector4f()) );
							 | 
						|
								    CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
							 | 
						|
								    CALL_SUBTEST_7( lpNorm(VectorXcd(10)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |