You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							242 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							242 lines
						
					
					
						
							10 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void array_for_matrix(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
							 | 
						|
								  typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; 
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  ColVectorType cv1 = ColVectorType::Random(rows);
							 | 
						|
								  RowVectorType rv1 = RowVectorType::Random(cols);
							 | 
						|
								
							 | 
						|
								  Scalar  s1 = internal::random<Scalar>(),
							 | 
						|
								          s2 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  // scalar addition
							 | 
						|
								  VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
							 | 
						|
								  VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
							 | 
						|
								  VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.array() += s2;
							 | 
						|
								  VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.array() -= s1;
							 | 
						|
								  VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
							 | 
						|
								
							 | 
						|
								  // reductions
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).cwiseAbs().maxCoeff());
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).cwiseAbs().maxCoeff());
							 | 
						|
								  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
							 | 
						|
								
							 | 
						|
								  // vector-wise ops
							 | 
						|
								  m3 = m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
							 | 
						|
								  m3 = m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
							 | 
						|
								  m3 = m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
							 | 
						|
								  m3 = m1;
							 | 
						|
								  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
							 | 
						|
								  
							 | 
						|
								  // empty objects
							 | 
						|
								  VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(),  RowVectorType::Zero(cols));
							 | 
						|
								  VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
							 | 
						|
								  
							 | 
						|
								  // verify the const accessors exist
							 | 
						|
								  const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
							 | 
						|
								  const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
							 | 
						|
								  const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
							 | 
						|
								  const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
							 | 
						|
								  VERIFY(&ref_a1 == &ref_m1);
							 | 
						|
								  VERIFY(&ref_a2 == &ref_m2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void comparisons(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  Index r = internal::random<Index>(0, rows-1),
							 | 
						|
								        c = internal::random<Index>(0, cols-1);
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols);
							 | 
						|
								
							 | 
						|
								  VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
							 | 
						|
								  VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
							 | 
						|
								  if (rows*cols>1)
							 | 
						|
								  {
							 | 
						|
								    m3 = m1;
							 | 
						|
								    m3(r,c) += 1;
							 | 
						|
								    VERIFY(! (m1.array() < m3.array()).all() );
							 | 
						|
								    VERIFY(! (m1.array() > m3.array()).all() );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // comparisons to scalar
							 | 
						|
								  VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
							 | 
						|
								  VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
							 | 
						|
								  VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
							 | 
						|
								  VERIFY( (m1.array() == m1(r,c) ).any() );
							 | 
						|
								
							 | 
						|
								  // test Select
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
							 | 
						|
								  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
							 | 
						|
								  for (int j=0; j<cols; ++j)
							 | 
						|
								  for (int i=0; i<rows; ++i)
							 | 
						|
								    m3(i,j) = internal::abs(m1(i,j))<mid ? 0 : m1(i,j);
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
							 | 
						|
								                        .select(MatrixType::Zero(rows,cols),m1), m3);
							 | 
						|
								  // shorter versions:
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
							 | 
						|
								                        .select(0,m1), m3);
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
							 | 
						|
								                        .select(m1,0), m3);
							 | 
						|
								  // even shorter version:
							 | 
						|
								  VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
							 | 
						|
								
							 | 
						|
								  // count
							 | 
						|
								  VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
							 | 
						|
								
							 | 
						|
								  typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
							 | 
						|
								
							 | 
						|
								  // TODO allows colwise/rowwise for array
							 | 
						|
								  VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
							 | 
						|
								  VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename VectorType> void lpNorm(const VectorType& v)
							 | 
						|
								{
							 | 
						|
								  VectorType u = VectorType::Random(v.size());
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
							 | 
						|
								  VERIFY_IS_APPROX(u.template lpNorm<2>(), internal::sqrt(u.array().abs().square().sum()));
							 | 
						|
								  VERIFY_IS_APPROX(internal::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void cwise_min_max(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols);
							 | 
						|
								
							 | 
						|
								  // min/max with array
							 | 
						|
								  Scalar maxM1 = m1.maxCoeff();
							 | 
						|
								  Scalar minM1 = m1.minCoeff();
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
							 | 
						|
								  VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
							 | 
						|
								  VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
							 | 
						|
								
							 | 
						|
								  // min/max with scalar input
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
							 | 
						|
								  VERIFY_IS_APPROX(m1, m1.cwiseMin( maxM1));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
							 | 
						|
								  VERIFY_IS_APPROX(m1, m1.cwiseMax( minM1));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
							 | 
						|
								  VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
							 | 
						|
								  VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixTraits> void resize(const MatrixTraits& t)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixTraits::Index Index;
							 | 
						|
								  typedef typename MatrixTraits::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
							 | 
						|
								  typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> VectorType;
							 | 
						|
								  typedef Array<Scalar,Dynamic,1> Array1DType;
							 | 
						|
								
							 | 
						|
								  Index rows = t.rows(), cols = t.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m(rows,cols);
							 | 
						|
								  VectorType v(rows);
							 | 
						|
								  Array2DType a2(rows,cols);
							 | 
						|
								  Array1DType a1(rows);
							 | 
						|
								
							 | 
						|
								  m.array().resize(rows+1,cols+1);
							 | 
						|
								  VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
							 | 
						|
								  a2.matrix().resize(rows+1,cols+1);
							 | 
						|
								  VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
							 | 
						|
								  v.array().resize(cols);
							 | 
						|
								  VERIFY(v.size()==cols);
							 | 
						|
								  a1.matrix().resize(cols);
							 | 
						|
								  VERIFY(a1.size()==cols);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_array_for_matrix()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( comparisons(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( comparisons(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( lpNorm(Vector2f()) );
							 | 
						|
								    CALL_SUBTEST_7( lpNorm(Vector3d()) );
							 | 
						|
								    CALL_SUBTEST_8( lpNorm(Vector4f()) );
							 | 
						|
								    CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								    CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								  }
							 | 
						|
								}
							 |