You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							177 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							177 lines
						
					
					
						
							7.1 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename T> EIGEN_DONT_INLINE T copy(const T& x) | |
| { | |
|   return x; | |
| } | |
| 
 | |
| template<typename MatrixType> void stable_norm(const MatrixType& m) | |
| { | |
|   /* this test covers the following files: | |
|      StableNorm.h | |
|   */ | |
|   using std::sqrt; | |
|   using std::abs; | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|    | |
|   bool complex_real_product_ok = true; | |
| 
 | |
|   // Check the basic machine-dependent constants. | |
|   { | |
|     int ibeta, it, iemin, iemax; | |
| 
 | |
|     ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers | |
|     it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa | |
|     iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent | |
|     iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent | |
|  | |
|     VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) | |
|            && "the stable norm algorithm cannot be guaranteed on this computer"); | |
|      | |
|     Scalar inf = std::numeric_limits<RealScalar>::infinity(); | |
|     if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) ) | |
|     { | |
|       complex_real_product_ok = false; | |
|       static bool first = true; | |
|       if(first) | |
|         std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl; | |
|       first = false; | |
|     } | |
|   } | |
| 
 | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   // get a non-zero random factor | |
|   Scalar factor = internal::random<Scalar>(); | |
|   while(numext::abs2(factor)<RealScalar(1e-4)) | |
|     factor = internal::random<Scalar>(); | |
|   Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | |
|    | |
|   factor = internal::random<Scalar>(); | |
|   while(numext::abs2(factor)<RealScalar(1e-4)) | |
|     factor = internal::random<Scalar>(); | |
|   Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | |
| 
 | |
|   MatrixType  vzero = MatrixType::Zero(rows, cols), | |
|               vrand = MatrixType::Random(rows, cols), | |
|               vbig(rows, cols), | |
|               vsmall(rows,cols); | |
| 
 | |
|   vbig.fill(big); | |
|   vsmall.fill(small); | |
| 
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); | |
|   VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm()); | |
|   VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm()); | |
|   VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm()); | |
| 
 | |
|   RealScalar size = static_cast<RealScalar>(m.size()); | |
| 
 | |
|   // test numext::isfinite | |
|   VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity())); | |
|   VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); | |
| 
 | |
|   // test overflow | |
|   VERIFY((numext::isfinite)(sqrt(size)*abs(big))); | |
|   VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail | |
|   VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); | |
|   VERIFY_IS_APPROX(vbig.blueNorm(),   sqrt(size)*abs(big)); | |
|   VERIFY_IS_APPROX(vbig.hypotNorm(),  sqrt(size)*abs(big)); | |
| 
 | |
|   // test underflow | |
|   VERIFY((numext::isfinite)(sqrt(size)*abs(small))); | |
|   VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())),   abs(sqrt(size)*small)); // here the default norm must fail | |
|   VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); | |
|   VERIFY_IS_APPROX(vsmall.blueNorm(),   sqrt(size)*abs(small)); | |
|   VERIFY_IS_APPROX(vsmall.hypotNorm(),  sqrt(size)*abs(small)); | |
| 
 | |
|   // Test compilation of cwise() version | |
|   VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm()); | |
|   VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm()); | |
|    | |
|   // test NaN, +inf, -inf  | |
|   MatrixType v; | |
|   Index i = internal::random<Index>(0,rows-1); | |
|   Index j = internal::random<Index>(0,cols-1); | |
| 
 | |
|   // NaN | |
|   { | |
|     v = vrand; | |
|     v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN(); | |
|     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm())); | |
|     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm())); | |
|     VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm())); | |
|     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm())); | |
|     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm())); | |
|   } | |
|    | |
|   // +inf | |
|   { | |
|     v = vrand; | |
|     v(i,j) = std::numeric_limits<RealScalar>::infinity(); | |
|     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm())); | |
|     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm())); | |
|     VERIFY(!(numext::isfinite)(v.stableNorm())); | |
|     if(complex_real_product_ok){ | |
|       VERIFY(isPlusInf(v.stableNorm())); | |
|     } | |
|     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm())); | |
|     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm())); | |
|   } | |
|    | |
|   // -inf | |
|   { | |
|     v = vrand; | |
|     v(i,j) = -std::numeric_limits<RealScalar>::infinity(); | |
|     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm())); | |
|     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm())); | |
|     VERIFY(!(numext::isfinite)(v.stableNorm())); | |
|     if(complex_real_product_ok) { | |
|       VERIFY(isPlusInf(v.stableNorm())); | |
|     } | |
|     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm())); | |
|     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm())); | |
|   } | |
|    | |
|   // mix | |
|   { | |
|     Index i2 = internal::random<Index>(0,rows-1); | |
|     Index j2 = internal::random<Index>(0,cols-1); | |
|     v = vrand; | |
|     v(i,j) = -std::numeric_limits<RealScalar>::infinity(); | |
|     v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN(); | |
|     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm())); | |
|     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm())); | |
|     VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm())); | |
|     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm())); | |
|     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm())); | |
|   } | |
| } | |
| 
 | |
| void test_stable_norm() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( stable_norm(Vector4d()) ); | |
|     CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); | |
|     CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); | |
|     CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); | |
|   } | |
| }
 |