You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							144 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							144 lines
						
					
					
						
							5.2 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <limits> | |
| #include <Eigen/Eigenvalues> | |
|  | |
| template<typename MatrixType> void eigensolver(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   /* this test covers the following files: | |
|      EigenSolver.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | |
|   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows,cols); | |
|   MatrixType a1 = MatrixType::Random(rows,cols); | |
|   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | |
| 
 | |
|   EigenSolver<MatrixType> ei0(symmA); | |
|   VERIFY_IS_EQUAL(ei0.info(), Success); | |
|   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); | |
|   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), | |
|     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); | |
| 
 | |
|   EigenSolver<MatrixType> ei1(a); | |
|   VERIFY_IS_EQUAL(ei1.info(), Success); | |
|   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); | |
|   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), | |
|                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | |
|   VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); | |
|   VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); | |
| 
 | |
|   EigenSolver<MatrixType> ei2; | |
|   ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | |
|   VERIFY_IS_EQUAL(ei2.info(), Success); | |
|   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | |
|   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | |
|   if (rows > 2) { | |
|     ei2.setMaxIterations(1).compute(a); | |
|     VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | |
|     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | |
|   } | |
| 
 | |
|   EigenSolver<MatrixType> eiNoEivecs(a, false); | |
|   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | |
|   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | |
|   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); | |
| 
 | |
|   MatrixType id = MatrixType::Identity(rows, cols); | |
|   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | |
| 
 | |
|   if (rows > 2 && rows < 20) | |
|   { | |
|     // Test matrix with NaN | |
|     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | |
|     EigenSolver<MatrixType> eiNaN(a); | |
|     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | |
|   } | |
| 
 | |
|   // regression test for bug 1098 | |
|   { | |
|     EigenSolver<MatrixType> eig(a.adjoint() * a); | |
|     eig.compute(a.adjoint() * a); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) | |
| { | |
|   EigenSolver<MatrixType> eig; | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | |
| 
 | |
|   MatrixType a = MatrixType::Random(m.rows(),m.cols()); | |
|   eig.compute(a, false); | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | |
|   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | |
| } | |
| 
 | |
| void test_eigensolver_generic() | |
| { | |
|   int s = 0; | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( eigensolver(Matrix4f()) ); | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|     CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
| 
 | |
|     // some trivial but implementation-wise tricky cases | |
|     CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); | |
|     CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); | |
|     CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); | |
|     CALL_SUBTEST_4( eigensolver(Matrix2d()) ); | |
|   } | |
| 
 | |
|   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); | |
|   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); | |
|   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); | |
|   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); | |
| 
 | |
|   // regression test for bug 410 | |
|   CALL_SUBTEST_2( | |
|   { | |
|      MatrixXd A(1,1); | |
|      A(0,0) = std::sqrt(-1.); // is Not-a-Number | |
|      Eigen::EigenSolver<MatrixXd> solver(A); | |
|      VERIFY_IS_EQUAL(solver.info(), NumericalIssue); | |
|   } | |
|   ); | |
|    | |
|   // regression test for bug 793 | |
| #ifdef EIGEN_TEST_PART_2 | |
|   { | |
|      MatrixXd a(3,3); | |
|      a << 0,  0,  1, | |
|           1,  1, 1, | |
|           1, 1e+200,  1; | |
|      Eigen::EigenSolver<MatrixXd> eig(a); | |
|      VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()); | |
|      VERIFY_IS_APPROX(a * eig.eigenvectors(), eig.eigenvectors() * eig.eigenvalues().asDiagonal()); | |
|   } | |
| #endif | |
|    | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s) | |
| }
 |