You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							67 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							67 lines
						
					
					
						
							2.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <limits> | |
| #include <Eigen/Eigenvalues> | |
|  | |
| template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   /* this test covers the following files: | |
|      GeneralizedEigenSolver.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows,cols); | |
|   MatrixType b = MatrixType::Random(rows,cols); | |
|   MatrixType a1 = MatrixType::Random(rows,cols); | |
|   MatrixType b1 = MatrixType::Random(rows,cols); | |
|   MatrixType spdA =  a.adjoint() * a + a1.adjoint() * a1; | |
|   MatrixType spdB =  b.adjoint() * b + b1.adjoint() * b1; | |
| 
 | |
|   // lets compare to GeneralizedSelfAdjointEigenSolver | |
|   GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB); | |
|   GeneralizedEigenSolver<MatrixType> eig(spdA, spdB); | |
| 
 | |
|   VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); | |
| 
 | |
|   VectorType realEigenvalues = eig.eigenvalues().real(); | |
|   std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size()); | |
|   VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); | |
| 
 | |
|   // regression test for bug 1098 | |
|   { | |
|     GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,b.adjoint() * b); | |
|     eig1.compute(a.adjoint() * a,b.adjoint() * b); | |
|     GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a,b.adjoint() * b); | |
|     eig2.compute(a.adjoint() * a,b.adjoint() * b); | |
|   } | |
| } | |
| 
 | |
| void test_eigensolver_generalized_real() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     int s = 0; | |
|     CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) ); | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) ); | |
| 
 | |
|     // some trivial but implementation-wise tricky cases | |
|     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) ); | |
|     CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) ); | |
|     CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) ); | |
|     CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
|   } | |
| }
 |