You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							255 lines
						
					
					
						
							8.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							255 lines
						
					
					
						
							8.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Geometry> | |
| #include <Eigen/LU> | |
| #include <Eigen/SVD> | |
|  | |
| template<typename T> T bounded_acos(T v) | |
| { | |
|   using std::acos; | |
|   using std::min; | |
|   using std::max; | |
|   return acos((max)(T(-1),(min)(v,T(1)))); | |
| } | |
| 
 | |
| template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) | |
| { | |
|   typedef typename QuatType::Scalar Scalar; | |
|   typedef Matrix<Scalar,3,1> VectorType; | |
|   typedef AngleAxis<Scalar> AA; | |
| 
 | |
|   Scalar largeEps = test_precision<Scalar>(); | |
| 
 | |
|   Scalar theta_tot = AA(q1*q0.inverse()).angle(); | |
|   if(theta_tot>M_PI) | |
|     theta_tot = 2.*M_PI-theta_tot; | |
|   for(Scalar t=0; t<=1.001; t+=0.1) | |
|   { | |
|     QuatType q = q0.slerp(t,q1); | |
|     Scalar theta = AA(q*q0.inverse()).angle(); | |
|     VERIFY(internal::abs(q.norm() - 1) < largeEps); | |
|     if(theta_tot==0)  VERIFY(theta_tot==0); | |
|     else              VERIFY(internal::abs(theta/theta_tot - t) < largeEps); | |
|   } | |
| } | |
| 
 | |
| template<typename Scalar, int Options> void quaternion(void) | |
| { | |
|   /* this test covers the following files: | |
|      Quaternion.h | |
|   */ | |
| 
 | |
|   typedef Matrix<Scalar,3,3> Matrix3; | |
|   typedef Matrix<Scalar,3,1> Vector3; | |
|   typedef Matrix<Scalar,4,1> Vector4; | |
|   typedef Quaternion<Scalar,Options> Quaternionx; | |
|   typedef AngleAxis<Scalar> AngleAxisx; | |
| 
 | |
|   Scalar largeEps = test_precision<Scalar>(); | |
|   if (internal::is_same<Scalar,float>::value) | |
|     largeEps = 1e-3f; | |
| 
 | |
|   Scalar eps = internal::random<Scalar>() * Scalar(1e-2); | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), | |
|           v1 = Vector3::Random(), | |
|           v2 = Vector3::Random(), | |
|           v3 = Vector3::Random(); | |
| 
 | |
|   Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)), | |
|           b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
| 
 | |
|   // Quaternion: Identity(), setIdentity(); | |
|   Quaternionx q1, q2; | |
|   q2.setIdentity(); | |
|   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); | |
|   q1.coeffs().setRandom(); | |
|   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); | |
| 
 | |
|   // concatenation | |
|   q1 *= q2; | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   q2 = AngleAxisx(a, v1.normalized()); | |
| 
 | |
|   // angular distance | |
|   Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle()); | |
|   if (refangle>Scalar(M_PI)) | |
|     refangle = Scalar(2)*Scalar(M_PI) - refangle; | |
| 
 | |
|   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) | |
|   { | |
|     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(q1.angularDistance(q2) - refangle), Scalar(1)); | |
|   } | |
| 
 | |
|   // rotation matrix conversion | |
|   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); | |
|   VERIFY_IS_APPROX(q1 * q2 * v2, | |
|     q1.toRotationMatrix() * q2.toRotationMatrix() * v2); | |
| 
 | |
|   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps) | |
|         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); | |
| 
 | |
|   q2 = q1.toRotationMatrix(); | |
|   VERIFY_IS_APPROX(q1*v1,q2*v1); | |
| 
 | |
| 
 | |
|   // angle-axis conversion | |
|   AngleAxisx aa = AngleAxisx(q1); | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | |
| 
 | |
|   // Do not execute the test if the rotation angle is almost zero, or | |
|   // the rotation axis and v1 are almost parallel. | |
|   if (internal::abs(aa.angle()) > 5*test_precision<Scalar>() | |
|       && (aa.axis() - v1.normalized()).norm() < 1.99 | |
|       && (aa.axis() + v1.normalized()).norm() < 1.99)  | |
|   { | |
|     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | |
|   } | |
| 
 | |
|   // from two vector creation | |
|   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); | |
|   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); | |
|   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); | |
|   if (internal::is_same<Scalar,double>::value) | |
|   { | |
|     v3 = (v1.array()+eps).matrix(); | |
|     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); | |
|     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); | |
|   } | |
| 
 | |
|   // from two vector creation static function | |
|   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); | |
|   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); | |
|   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); | |
|   if (internal::is_same<Scalar,double>::value) | |
|   { | |
|     v3 = (v1.array()+eps).matrix(); | |
|     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); | |
|     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); | |
|   } | |
| 
 | |
|   // inverse and conjugate | |
|   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); | |
|   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); | |
| 
 | |
|   // test casting | |
|   Quaternion<float> q1f = q1.template cast<float>(); | |
|   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); | |
|   Quaternion<double> q1d = q1.template cast<double>(); | |
|   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); | |
| 
 | |
|   // test bug 369 - improper alignment. | |
|   Quaternionx *q = new Quaternionx; | |
|   delete q; | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   q2 = AngleAxisx(b, v1.normalized()); | |
|   check_slerp(q1,q2); | |
| 
 | |
|   q1 = AngleAxisx(b, v1.normalized()); | |
|   q2 = AngleAxisx(b+M_PI, v1.normalized()); | |
|   check_slerp(q1,q2); | |
| 
 | |
|   q1 = AngleAxisx(b,  v1.normalized()); | |
|   q2 = AngleAxisx(-b, -v1.normalized()); | |
|   check_slerp(q1,q2); | |
| 
 | |
|   q1.coeffs() = Vector4::Random().normalized(); | |
|   q2.coeffs() = -q1.coeffs(); | |
|   check_slerp(q1,q2); | |
| } | |
| 
 | |
| template<typename Scalar> void mapQuaternion(void){ | |
|   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; | |
|   typedef Map<Quaternion<Scalar> > MQuaternionUA; | |
|   typedef Map<const Quaternion<Scalar> > MCQuaternionUA; | |
|   typedef Quaternion<Scalar> Quaternionx; | |
| 
 | |
|   EIGEN_ALIGN16 Scalar array1[4]; | |
|   EIGEN_ALIGN16 Scalar array2[4]; | |
|   EIGEN_ALIGN16 Scalar array3[4+1]; | |
|   Scalar* array3unaligned = array3+1; | |
| 
 | |
| //  std::cerr << array1 << " " << array2 << " " << array3 << "\n"; | |
|   MQuaternionA(array1).coeffs().setRandom(); | |
|   (MQuaternionA(array2)) = MQuaternionA(array1); | |
|   (MQuaternionUA(array3unaligned)) = MQuaternionA(array1); | |
| 
 | |
|   Quaternionx q1 = MQuaternionA(array1); | |
|   Quaternionx q2 = MQuaternionA(array2); | |
|   Quaternionx q3 = MQuaternionUA(array3unaligned); | |
|   Quaternionx q4 = MCQuaternionUA(array3unaligned); | |
| 
 | |
|   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); | |
|   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); | |
|   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); | |
|   #ifdef EIGEN_VECTORIZE | |
|   if(internal::packet_traits<Scalar>::Vectorizable) | |
|     VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); | |
|   #endif | |
| } | |
| 
 | |
| template<typename Scalar> void quaternionAlignment(void){ | |
|   typedef Quaternion<Scalar,AutoAlign> QuaternionA; | |
|   typedef Quaternion<Scalar,DontAlign> QuaternionUA; | |
| 
 | |
|   EIGEN_ALIGN16 Scalar array1[4]; | |
|   EIGEN_ALIGN16 Scalar array2[4]; | |
|   EIGEN_ALIGN16 Scalar array3[4+1]; | |
|   Scalar* arrayunaligned = array3+1; | |
| 
 | |
|   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; | |
|   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; | |
|   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; | |
| 
 | |
|   q1->coeffs().setRandom(); | |
|   *q2 = *q1; | |
|   *q3 = *q1; | |
| 
 | |
|   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); | |
|   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); | |
|   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY | |
|   if(internal::packet_traits<Scalar>::Vectorizable) | |
|     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); | |
|   #endif | |
| } | |
| 
 | |
| template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) | |
| { | |
|   // there's a lot that we can't test here while still having this test compile! | |
|   // the only possible approach would be to run a script trying to compile stuff and checking that it fails. | |
|   // CMake can help with that. | |
|  | |
|   // verify that map-to-const don't have LvalueBit | |
|   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; | |
|   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); | |
|   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); | |
|   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); | |
|   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); | |
| } | |
| 
 | |
| void test_geo_quaternion() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); | |
|     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); | |
|     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); | |
|     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); | |
|     CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); | |
|     CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); | |
|     CALL_SUBTEST_5(( quaternionAlignment<float>() )); | |
|     CALL_SUBTEST_6(( quaternionAlignment<double>() )); | |
|     CALL_SUBTEST_1( mapQuaternion<float>() ); | |
|     CALL_SUBTEST_2( mapQuaternion<double>() ); | |
|   } | |
| }
 |