You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

572 lines
24 KiB

#include "src/adapters/ExplicitModelAdapter.h"
#include "src/storage/SparseMatrix.h"
#include "src/utility/Settings.h"
#include "src/exceptions/WrongFormatException.h"
#include "src/ir/Program.h"
#include "src/ir/RewardModel.h"
#include "src/ir/StateReward.h"
#include "src/ir/TransitionReward.h"
#include "src/models/AbstractModel.h"
#include "src/models/Dtmc.h"
#include "src/models/Ctmc.h"
#include "src/models/Mdp.h"
#include "src/models/Ctmdp.h"
typedef std::pair<std::vector<bool>, std::vector<int_fast64_t>> StateType;
#include <sstream>
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
namespace storm {
namespace adapters {
ExplicitModelAdapter::ExplicitModelAdapter(storm::ir::Program program) : program(program),
booleanVariables(), integerVariables(), booleanVariableToIndexMap(), integerVariableToIndexMap(),
allStates(), stateToIndexMap(), numberOfTransitions(0), numberOfChoices(0), transitionMap() {
// Get variables from program.
this->initializeVariables();
storm::settings::Settings* s = storm::settings::instance();
this->precision = s->get<double>("precision");
}
ExplicitModelAdapter::~ExplicitModelAdapter() {
this->clearInternalState();
}
std::shared_ptr<storm::models::AbstractModel<double>> ExplicitModelAdapter::getModel(std::string const & rewardModelName) {
// Initialize rewardModel.
this->rewardModel = nullptr;
if (rewardModelName != "") {
this->rewardModel = std::unique_ptr<storm::ir::RewardModel>(new storm::ir::RewardModel(this->program.getRewardModel(rewardModelName)));
}
// State expansion, build temporary map, compute transition rewards.
this->buildTransitionMap();
// Compute labeling.
storm::models::AtomicPropositionsLabeling stateLabeling = this->getStateLabeling(this->program.getLabels());
// Compute state rewards.
boost::optional<std::vector<double>> stateRewards;
if ((this->rewardModel != nullptr) && this->rewardModel->hasStateRewards()) {
stateRewards.reset(this->getStateRewards(this->rewardModel->getStateRewards()));
}
// Build and return actual model.
switch (this->program.getModelType())
{
case storm::ir::Program::DTMC:
{
storm::storage::SparseMatrix<double> matrix = this->buildDeterministicMatrix();
return std::shared_ptr<storm::models::AbstractModel<double>>(new storm::models::Dtmc<double>(matrix, stateLabeling, stateRewards, this->transitionRewards));
break;
}
case storm::ir::Program::CTMC:
{
storm::storage::SparseMatrix<double> matrix = this->buildDeterministicMatrix();
return std::shared_ptr<storm::models::AbstractModel<double>>(new storm::models::Ctmc<double>(matrix, stateLabeling, stateRewards, this->transitionRewards));
break;
}
case storm::ir::Program::MDP:
{
storm::storage::SparseMatrix<double> matrix = this->buildNondeterministicMatrix();
return std::shared_ptr<storm::models::AbstractModel<double>>(new storm::models::Mdp<double>(matrix, stateLabeling, this->choiceIndices, stateRewards, this->transitionRewards));
break;
}
case storm::ir::Program::CTMDP:
{
storm::storage::SparseMatrix<double> matrix = this->buildNondeterministicMatrix();
return std::shared_ptr<storm::models::AbstractModel<double>>(new storm::models::Ctmdp<double>(matrix, stateLabeling, this->choiceIndices, stateRewards, this->transitionRewards));
break;
}
default:
LOG4CPLUS_ERROR(logger, "Error while creating model from probabilistic program: We can't handle this model type.");
throw storm::exceptions::WrongFormatException() << "Error while creating model from probabilistic program: We can't handle this model type.";
break;
}
}
void ExplicitModelAdapter::setValue(StateType* const state, uint_fast64_t const index, bool const value) {
std::get<0>(*state)[index] = value;
}
void ExplicitModelAdapter::setValue(StateType* const state, uint_fast64_t const index, int_fast64_t const value) {
std::get<1>(*state)[index] = value;
}
std::string ExplicitModelAdapter::toString(StateType const * const state) {
std::stringstream ss;
for (unsigned int i = 0; i < state->first.size(); i++) ss << state->first[i] << "\t";
for (unsigned int i = 0; i < state->second.size(); i++) ss << state->second[i] << "\t";
return ss.str();
}
std::vector<double> ExplicitModelAdapter::getStateRewards(std::vector<storm::ir::StateReward> const & rewards) {
std::vector<double> results(this->allStates.size());
for (uint_fast64_t index = 0; index < this->allStates.size(); index++) {
results[index] = 0;
for (auto reward: rewards) {
// Add this reward to the state if the state is included in the state reward.
if (reward.getStatePredicate()->getValueAsBool(this->allStates[index]) == true) {
results[index] += reward.getRewardValue()->getValueAsDouble(this->allStates[index]);
}
}
}
return results;
}
storm::models::AtomicPropositionsLabeling ExplicitModelAdapter::getStateLabeling(std::map<std::string, std::shared_ptr<storm::ir::expressions::BaseExpression>> labels) {
storm::models::AtomicPropositionsLabeling results(this->allStates.size(), labels.size() + 1);
// Initialize labeling.
for (auto it : labels) {
results.addAtomicProposition(it.first);
}
for (uint_fast64_t index = 0; index < this->allStates.size(); index++) {
for (auto label: labels) {
// Add label to state, if guard is true.
if (label.second->getValueAsBool(this->allStates[index])) {
results.addAtomicPropositionToState(label.first, index);
}
}
}
// Also label the initial state.
results.addAtomicProposition("init");
StateType* initialState = this->getInitialState();
uint_fast64_t initialIndex = this->stateToIndexMap[initialState];
results.addAtomicPropositionToState("init", initialIndex);
delete initialState;
return results;
}
void ExplicitModelAdapter::initializeVariables() {
uint_fast64_t numberOfIntegerVariables = 0;
uint_fast64_t numberOfBooleanVariables = 0;
// Count number of variables.
for (uint_fast64_t i = 0; i < program.getNumberOfModules(); ++i) {
numberOfIntegerVariables += program.getModule(i).getNumberOfIntegerVariables();
numberOfBooleanVariables += program.getModule(i).getNumberOfBooleanVariables();
}
this->booleanVariables.resize(numberOfBooleanVariables);
this->integerVariables.resize(numberOfIntegerVariables);
// Create variables.
for (uint_fast64_t i = 0; i < program.getNumberOfModules(); ++i) {
storm::ir::Module const& module = program.getModule(i);
for (uint_fast64_t j = 0; j < module.getNumberOfBooleanVariables(); ++j) {
storm::ir::BooleanVariable var = module.getBooleanVariable(j);
this->booleanVariables[var.getGlobalIndex()] = var;
this->booleanVariableToIndexMap[var.getName()] = var.getGlobalIndex();
}
for (uint_fast64_t j = 0; j < module.getNumberOfIntegerVariables(); ++j) {
storm::ir::IntegerVariable var = module.getIntegerVariable(j);
this->integerVariables[var.getGlobalIndex()] = var;
this->integerVariableToIndexMap[var.getName()] = var.getGlobalIndex();
}
}
}
/*!
* Retrieves all active command labeled by some label, ordered by modules.
*
* This function will iterate over all modules and retrieve all commands that are labeled with the given action and active for the current state.
* The result will be a list of lists of commands.
*
* For each module that has appropriately labeled commands, there will be a list.
* If none of these commands is active, this list is empty.
* Note the difference between *no list* and *empty list*: Modules that produce no list are not relevant for this action while an empty list means, that it is not possible to do anything with this label.
* @param state Current state.
* @param action Action label.
* @return Active commands.
*/
std::unique_ptr<std::list<std::list<storm::ir::Command>>> ExplicitModelAdapter::getActiveCommandsByAction(StateType const * state, std::string& action) {
std::unique_ptr<std::list<std::list<storm::ir::Command>>> res = std::unique_ptr<std::list<std::list<storm::ir::Command>>>(new std::list<std::list<storm::ir::Command>>());
// Iterate over all modules.
for (uint_fast64_t i = 0; i < this->program.getNumberOfModules(); ++i) {
storm::ir::Module const& module = this->program.getModule(i);
// If the module has no command labeled with the given action, skip this module.
if (!module.hasAction(action)) {
continue;
}
std::set<uint_fast64_t> const& ids = module.getCommandsByAction(action);
std::list<storm::ir::Command> commands;
// Look up commands by their id. Add, if guard holds.
for (uint_fast64_t id : ids) {
storm::ir::Command const& cmd = module.getCommand(id);
if (cmd.getGuard()->getValueAsBool(state)) {
commands.push_back(module.getCommand(id));
}
}
res->push_back(commands);
}
// Sort the result in the vague hope that having small lists at the beginning will speed up the expanding.
// This is how lambdas may look like in C++...
res->sort([](const std::list<storm::ir::Command>& a, const std::list<storm::ir::Command>& b){ return a.size() < b.size(); });
return res;
}
/*!
* Apply an update to the given state and return resulting state.
* @params state Current state.
* @params update Update to be applied.
* @return Resulting state.
*/
StateType* ExplicitModelAdapter::applyUpdate(StateType const * const state, storm::ir::Update const& update) const {
return this->applyUpdate(state, state, update);
}
StateType* ExplicitModelAdapter::applyUpdate(StateType const * const state, StateType const * const baseState, storm::ir::Update const& update) const {
StateType* newState = new StateType(*state);
for (auto assignedVariable : update.getBooleanAssignments()) {
setValue(newState, this->booleanVariableToIndexMap.at(assignedVariable.first), assignedVariable.second.getExpression()->getValueAsBool(baseState));
}
for (auto assignedVariable : update.getIntegerAssignments()) {
setValue(newState, this->integerVariableToIndexMap.at(assignedVariable.first), assignedVariable.second.getExpression()->getValueAsInt(baseState));
}
return newState;
}
/*!
* Generates the initial state.
*/
StateType* ExplicitModelAdapter::getInitialState() {
StateType* initialState = new StateType();
initialState->first.resize(this->booleanVariables.size());
initialState->second.resize(this->integerVariables.size());
// Start with boolean variables.
for (uint_fast64_t i = 0; i < this->booleanVariables.size(); ++i) {
// Check if an initial value is given
if (this->booleanVariables[i].getInitialValue().get() == nullptr) {
// If no initial value was given, we assume that the variable is initially false.
std::get<0>(*initialState)[i] = false;
} else {
// Initial value was given.
bool initialValue = this->booleanVariables[i].getInitialValue()->getValueAsBool(nullptr);
std::get<0>(*initialState)[i] = initialValue;
}
}
// Now process integer variables.
for (uint_fast64_t i = 0; i < this->integerVariables.size(); ++i) {
// Check if an initial value was given.
if (this->integerVariables[i].getInitialValue().get() == nullptr) {
// No initial value was given, so we assume that the variable initially has the least value it can take.
std::get<1>(*initialState)[i] = this->integerVariables[i].getLowerBound()->getValueAsInt(nullptr);
} else {
// Initial value was given.
int_fast64_t initialValue = this->integerVariables[i].getInitialValue()->getValueAsInt(nullptr);
std::get<1>(*initialState)[i] = initialValue;
}
}
LOG4CPLUS_DEBUG(logger, "Generated initial state.");
return initialState;
}
/*!
* Retrieves the state id of the given state.
* If the state has not been hit yet, it will be added to allStates and given a new id.
* In this case, the pointer must not be deleted, as it is used within allStates.
* If the state is already known, the pointer is deleted and the old state id is returned.
* Hence, the given state pointer should not be used afterwards.
* @param state Pointer to state, shall not be used afterwards.
* @returns State id of given state.
*/
uint_fast64_t ExplicitModelAdapter::getOrAddStateId(StateType * state) {
// Check, if we already know this state at all.
auto indexIt = this->stateToIndexMap.find(state);
if (indexIt == this->stateToIndexMap.end()) {
// No, add to allStates, initialize index.
allStates.push_back(state);
stateToIndexMap[state] = allStates.size()-1;
return allStates.size()-1;
} else {
// Yes, obtain index and delete state object.
delete state;
return indexIt->second;
}
}
/*!
* Expands all unlabeled transitions for a given state and adds them to the given list of results.
* @params state State to be explored.
* @params res Intermediate transition map.
*/
void ExplicitModelAdapter::addUnlabeledTransitions(const uint_fast64_t stateID, std::list<std::pair<std::string, std::map<uint_fast64_t, double>>>& res) {
const StateType* state = this->allStates[stateID];
// Iterate over all modules.
for (uint_fast64_t i = 0; i < program.getNumberOfModules(); ++i) {
storm::ir::Module const& module = program.getModule(i);
// Iterate over all commands.
for (uint_fast64_t j = 0; j < module.getNumberOfCommands(); ++j) {
storm::ir::Command const& command = module.getCommand(j);
// Only consider unlabeled commands.
if (command.getActionName() != "") continue;
// Omit, if command is not active.
if (!command.getGuard()->getValueAsBool(state)) continue;
// Add a new map and get pointer.
res.emplace_back();
std::map<uint_fast64_t, double>* states = &res.back().second;
double probSum = 0;
// Iterate over all updates.
for (uint_fast64_t k = 0; k < command.getNumberOfUpdates(); ++k) {
// Obtain new state id.
storm::ir::Update const& update = command.getUpdate(k);
uint_fast64_t newStateId = this->getOrAddStateId(this->applyUpdate(state, update));
probSum += update.getLikelihoodExpression()->getValueAsDouble(state);
// Check, if we already know this state, add up probabilities for every state.
auto stateIt = states->find(newStateId);
if (stateIt == states->end()) {
(*states)[newStateId] = update.getLikelihoodExpression()->getValueAsDouble(state);
this->numberOfTransitions++;
} else {
(*states)[newStateId] += update.getLikelihoodExpression()->getValueAsDouble(state);
}
}
if (std::abs(1 - probSum) > this->precision) {
LOG4CPLUS_ERROR(logger, "Sum of update probabilities should be one for command:\n\t" << command.toString());
throw storm::exceptions::WrongFormatException() << "Sum of update probabilities should be one for command:\n\t" << command.toString();
}
}
}
}
/*!
* Explores reachable state from given state by using labeled transitions.
* Found transitions are stored in given map.
* @param stateID State to be explored.
* @param res Intermediate transition map.
*/
void ExplicitModelAdapter::addLabeledTransitions(const uint_fast64_t stateID, std::list<std::pair<std::string, std::map<uint_fast64_t, double>>>& res) {
// Create a copy of the current state, as we will free intermediate states...
for (std::string action : this->program.getActions()) {
StateType* state = new StateType(*this->allStates[stateID]);
std::unique_ptr<std::list<std::list<storm::ir::Command>>> cmds = this->getActiveCommandsByAction(state, action);
// Start with current state
std::unordered_map<StateType*, double, StateHash, StateCompare> resultStates;
resultStates[state] = 1.0;
for (std::list<storm::ir::Command> module : *cmds) {
if (resultStates.size() == 0) break;
std::unordered_map<StateType*, double, StateHash, StateCompare> newStates;
// Iterate over all commands within this module.
for (storm::ir::Command command : module) {
// Iterate over all updates of this command.
double probSum = 0;
for (uint_fast64_t k = 0; k < command.getNumberOfUpdates(); ++k) {
storm::ir::Update const update = command.getUpdate(k);
// Iterate over all resultStates.
for (auto it : resultStates) {
// Apply the new update and get resulting state.
StateType* newState = this->applyUpdate(it.first, this->allStates[stateID], update);
probSum += it.second * update.getLikelihoodExpression()->getValueAsDouble(it.first);
// Insert the new state into newStates array.
// Take care of calculation of likelihood, combine identical states.
auto s = newStates.find(newState);
if (s == newStates.end()) {
newStates[newState] = it.second * update.getLikelihoodExpression()->getValueAsDouble(it.first);
} else {
newStates[newState] += it.second * update.getLikelihoodExpression()->getValueAsDouble(it.first);
}
}
}
if (std::abs(1 - probSum) > this->precision) {
LOG4CPLUS_ERROR(logger, "Sum of update probabilities should be one for command:\n\t" << command.toString());
throw storm::exceptions::WrongFormatException() << "Sum of update probabilities should be one for command:\n\t" << command.toString();
}
}
for (auto it: resultStates) {
delete it.first;
}
// Move new states to resultStates.
resultStates.clear();
resultStates.insert(newStates.begin(), newStates.end());
}
if (resultStates.size() > 0) {
res.push_back(std::make_pair(action, std::map<uint_fast64_t, double>()));
std::map<uint_fast64_t, double>* states = &res.back().second;
// Now add our final result states to our global result.
for (auto const& it : resultStates) {
uint_fast64_t newStateID = this->getOrAddStateId(it.first);
(*states)[newStateID] = it.second;
}
this->numberOfTransitions += states->size();
}
}
}
/*!
* Create matrix from intermediate mapping, assuming it is a dtmc model.
* @param intermediate Intermediate representation of transition mapping.
* @return result matrix.
*/
storm::storage::SparseMatrix<double> ExplicitModelAdapter::buildDeterministicMatrix() {
// ***** ATTENTION *****
// this->numberOfTransitions is meaningless, as we combine all choices into one for each state.
// Hence, we compute the correct number of transitions now.
uint_fast64_t numberOfTransitions = 0;
for (uint_fast64_t state = 0; state < this->allStates.size(); state++) {
// Collect all target nodes in a set to get number of distinct nodes.
std::set<uint_fast64_t> set;
for (auto choice : transitionMap[state]) {
for (auto elem : choice.second) {
set.insert(elem.first);
}
}
numberOfTransitions += set.size();
}
LOG4CPLUS_INFO(logger, "Building deterministic transition matrix: " << allStates.size() << " x " << allStates.size() << " with " << numberOfTransitions << " transitions.");
// Now build matrix.
storm::storage::SparseMatrix<double> result(allStates.size());
result.initialize(numberOfTransitions);
if ((this->rewardModel != nullptr) && (this->rewardModel->hasTransitionRewards())) {
this->transitionRewards.reset(std::move(storm::storage::SparseMatrix<double>(allStates.size())));
this->transitionRewards.get().initialize(numberOfTransitions);
}
for (uint_fast64_t state = 0; state < this->allStates.size(); state++) {
if (transitionMap[state].size() > 1) {
LOG4CPLUS_WARN(logger, "State " << state << " has " << transitionMap[state].size() << " overlapping guards in deterministic model.");
}
// Combine choices to one map.
std::map<uint_fast64_t, double> map;
std::map<uint_fast64_t, double> rewardMap;
for (auto choice : transitionMap[state]) {
for (auto elem : choice.second) {
map[elem.first] += elem.second;
if ((this->rewardModel != nullptr) && (this->rewardModel->hasTransitionRewards())) {
for (auto reward : this->rewardModel->getTransitionRewards()) {
if (reward.getStatePredicate()->getValueAsBool(this->allStates[state]) == true) {
rewardMap[elem.first] += reward.getRewardValue()->getValueAsDouble(this->allStates[state]);
}
}
}
}
}
// Scale probabilities by number of choices.
double factor = 1.0 / transitionMap[state].size();
for (auto it : map) {
result.addNextValue(state, it.first, it.second * factor);
if ((this->rewardModel != nullptr) && (this->rewardModel->hasTransitionRewards())) {
this->transitionRewards.get().addNextValue(state, it.first, rewardMap[it.first] * factor);
}
}
}
result.finalize();
return result;
}
/*!
* Create matrix from intermediate mapping, assuming it is a mdp model.
* @param intermediate Intermediate representation of transition mapping.
* @param choices Overall number of choices for all nodes.
* @return result matrix.
*/
storm::storage::SparseMatrix<double> ExplicitModelAdapter::buildNondeterministicMatrix() {
LOG4CPLUS_INFO(logger, "Building nondeterministic transition matrix: " << this->numberOfChoices << " x " << allStates.size() << " with " << this->numberOfTransitions << " transitions.");
storm::storage::SparseMatrix<double> result(this->numberOfChoices, allStates.size());
result.initialize(this->numberOfTransitions);
if ((this->rewardModel != nullptr) && (this->rewardModel->hasTransitionRewards())) {
this->transitionRewards.reset(storm::storage::SparseMatrix<double>(this->numberOfChoices, allStates.size()));
this->transitionRewards.get().initialize(this->numberOfTransitions);
}
this->choiceIndices.clear();
this->choiceIndices.reserve(allStates.size());
// Build matrix.
uint_fast64_t nextRow = 0;
for (uint_fast64_t state = 0; state < this->allStates.size(); state++) {
this->choiceIndices.push_back(transitionMap[state].size());
for (auto choice : transitionMap[state]) {
for (auto it : choice.second) {
result.addNextValue(nextRow, it.first, it.second);
if ((this->rewardModel != nullptr) && (this->rewardModel->hasTransitionRewards())) {
double rewardValue = 0;
for (auto reward : this->rewardModel->getTransitionRewards()) {
if (reward.getStatePredicate()->getValueAsBool(this->allStates[state]) == true) {
rewardValue = reward.getRewardValue()->getValueAsDouble(this->allStates[state]);
}
}
this->transitionRewards.get().addNextValue(nextRow, it.first, rewardValue);
}
}
nextRow++;
}
}
result.finalize();
return result;
}
/*!
* Build matrix from model. Starts with all initial states and explores the reachable state space.
* While exploring, the transitions are stored in a temporary map.
* Afterwards, we transform this map into the actual matrix.
* @return result matrix.
*/
void ExplicitModelAdapter::buildTransitionMap() {
LOG4CPLUS_DEBUG(logger, "Starting to create transition map from program...");
this->clearInternalState();
this->allStates.clear();
this->allStates.push_back(this->getInitialState());
stateToIndexMap[this->allStates[0]] = 0;
for (uint_fast64_t curIndex = 0; curIndex < this->allStates.size(); curIndex++)
{
this->addUnlabeledTransitions(curIndex, this->transitionMap[curIndex]);
this->addLabeledTransitions(curIndex, this->transitionMap[curIndex]);
this->numberOfChoices += this->transitionMap[curIndex].size();
if (this->transitionMap[curIndex].size() == 0) {
// This is a deadlock state.
if (storm::settings::instance()->isSet("fix-deadlocks")) {
this->numberOfTransitions++;
this->numberOfChoices++;
this->transitionMap[curIndex].emplace_back();
this->transitionMap[curIndex].back().second[curIndex] = 1;
} else {
LOG4CPLUS_ERROR(logger, "Error while creating sparse matrix from probabilistic program: found deadlock state.");
throw storm::exceptions::WrongFormatException() << "Error while creating sparse matrix from probabilistic program: found deadlock state.";
}
}
}
LOG4CPLUS_DEBUG(logger, "Finished creating transition map.");
}
void ExplicitModelAdapter::clearInternalState() {
for (auto it : allStates) {
delete it;
}
allStates.clear();
stateToIndexMap.clear();
this->numberOfTransitions = 0;
this->numberOfChoices = 0;
this->choiceIndices.clear();
this->transitionRewards.reset();
this->transitionMap.clear();
}
} // namespace adapters
} // namespace storm