You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
10 KiB
243 lines
10 KiB
#ifndef STORM_UTIL_SHORTESTPATHS_H_
|
|
#define STORM_UTIL_SHORTESTPATHS_H_
|
|
|
|
#include <vector>
|
|
#include <boost/optional/optional.hpp>
|
|
#include <unordered_set>
|
|
#include "src/models/sparse/Model.h"
|
|
#include "src/storage/sparse/StateType.h"
|
|
#include "constants.h"
|
|
|
|
// NOTE: You'll (eventually) find the usual API documentation below;
|
|
// for more information about the purpose, design decisions,
|
|
// etc., you may consult `shortestPath.md`. - Tom
|
|
|
|
// TODO: test whether using BitVector instead of vector<state_t> is
|
|
// faster for storing predecessors etc.
|
|
|
|
// Now using BitVectors instead of vector<state_t> in the API because
|
|
// BitVectors are used throughout Storm to represent a (unordered) list
|
|
// of states.
|
|
// (Even though both initialStates and targets are probably very sparse.)
|
|
|
|
namespace storm {
|
|
namespace utility {
|
|
namespace ksp {
|
|
using state_t = storage::sparse::state_type;
|
|
using OrderedStateList = std::vector<state_t>;
|
|
using BitVector = storage::BitVector;
|
|
|
|
// -- helper structs/classes -----------------------------------------------------------------------------
|
|
|
|
template <typename T>
|
|
struct Path {
|
|
boost::optional<state_t> predecessorNode;
|
|
unsigned long predecessorK;
|
|
T distance;
|
|
|
|
// arbitrary order for std::set
|
|
bool operator<(const Path<T>& rhs) const {
|
|
if (predecessorNode != rhs.predecessorNode) {
|
|
return predecessorNode < rhs.predecessorNode;
|
|
}
|
|
return predecessorK < predecessorK;
|
|
}
|
|
|
|
bool operator==(const Path<T>& rhs) const {
|
|
return (predecessorNode == rhs.predecessorNode) && (predecessorK == rhs.predecessorK);
|
|
}
|
|
};
|
|
|
|
// when using the raw matrix/vector invocation, this enum parameter
|
|
// forces the caller to declare whether the matrix has the evil I-P
|
|
// format, which requires back-conversion of the entries
|
|
enum class MatrixFormat { straight, iMinusP };
|
|
|
|
// -------------------------------------------------------------------------------------------------------
|
|
|
|
template <typename T>
|
|
class ShortestPathsGenerator {
|
|
public:
|
|
using Matrix = storage::SparseMatrix<T>;
|
|
using StateProbMap = std::unordered_map<state_t, T>;
|
|
using Model = models::sparse::Model<T>;
|
|
|
|
/*!
|
|
* Performs precomputations (including meta-target insertion and Dijkstra).
|
|
* Modifications are done locally, `model` remains unchanged.
|
|
* Target (group) cannot be changed.
|
|
*/
|
|
ShortestPathsGenerator(Model const& model, BitVector const& targetBV);
|
|
|
|
// allow alternative ways of specifying the target,
|
|
// all of which will be converted to BitVector and delegated to constructor above
|
|
ShortestPathsGenerator(Model const& model, state_t singleTarget);
|
|
ShortestPathsGenerator(Model const& model, std::vector<state_t> const& targetList);
|
|
ShortestPathsGenerator(Model const& model, std::string const& targetLabel = "target");
|
|
|
|
// a further alternative: use transition matrix of maybe-states
|
|
// combined with target vector (e.g., the instantiated matrix/vector from SamplingModel);
|
|
// in this case separately specifying a target makes no sense
|
|
ShortestPathsGenerator(Matrix const& transitionMatrix, std::vector<T> const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat);
|
|
ShortestPathsGenerator(Matrix const& maybeTransitionMatrix, StateProbMap const& targetProbMap, BitVector const& initialStates, MatrixFormat matrixFormat);
|
|
|
|
|
|
inline ~ShortestPathsGenerator(){}
|
|
|
|
/*!
|
|
* Returns distance (i.e., probability) of the KSP.
|
|
* Computes KSP if not yet computed.
|
|
* @throws std::invalid_argument if no such k-shortest path exists
|
|
*/
|
|
T getDistance(unsigned long k);
|
|
|
|
/*!
|
|
* Returns the states that occur in the KSP.
|
|
* For a path-traversal (in order and with duplicates), see `getKSP`.
|
|
* Computes KSP if not yet computed.
|
|
* @throws std::invalid_argument if no such k-shortest path exists
|
|
*/
|
|
storage::BitVector getStates(unsigned long k);
|
|
|
|
/*!
|
|
* Returns the states of the KSP as back-to-front traversal.
|
|
* Computes KSP if not yet computed.
|
|
* @throws std::invalid_argument if no such k-shortest path exists
|
|
*/
|
|
OrderedStateList getPathAsList(unsigned long k);
|
|
|
|
|
|
private:
|
|
Matrix const& transitionMatrix; // FIXME: store reference instead (?)
|
|
state_t numStates; // includes meta-target, i.e. states in model + 1
|
|
state_t metaTarget;
|
|
BitVector initialStates;
|
|
StateProbMap targetProbMap;
|
|
|
|
MatrixFormat matrixFormat;
|
|
|
|
std::vector<OrderedStateList> graphPredecessors;
|
|
std::vector<boost::optional<state_t>> shortestPathPredecessors;
|
|
std::vector<OrderedStateList> shortestPathSuccessors;
|
|
std::vector<T> shortestPathDistances;
|
|
|
|
std::vector<std::vector<Path<T>>> kShortestPaths;
|
|
std::vector<std::set<Path<T>>> candidatePaths;
|
|
|
|
/*!
|
|
* Computes list of predecessors for all nodes.
|
|
* Reachability is not considered; a predecessor is simply any node that has an edge leading to the node in question.
|
|
* Requires `transitionMatrix`.
|
|
* Modifies `graphPredecessors`.
|
|
*/
|
|
void computePredecessors();
|
|
|
|
/*!
|
|
* Computes shortest path distances and predecessors.
|
|
* Requires `model`, `numStates`, `transitionMatrix`.
|
|
* Modifies `shortestPathPredecessors` and `shortestPathDistances`.
|
|
*/
|
|
void performDijkstra();
|
|
|
|
/*!
|
|
* Computes list of shortest path successor nodes from predecessor list.
|
|
* Requires `shortestPathPredecessors`, `numStates`.
|
|
* Modifies `shortestPathSuccessors`.
|
|
*/
|
|
void computeSPSuccessors();
|
|
|
|
/*!
|
|
* Constructs and stores the implicit shortest path representations (see `Path`) for the (1-)shortest paths.
|
|
* Requires `shortestPathPredecessors`, `shortestPathDistances`, `model`, `numStates`.
|
|
* Modifies `kShortestPaths`.
|
|
*/
|
|
void initializeShortestPaths();
|
|
|
|
/*!
|
|
* Main step of REA algorithm. TODO: Document further.
|
|
*/
|
|
void computeNextPath(state_t node, unsigned long k);
|
|
|
|
/*!
|
|
* Computes k-shortest path if not yet computed.
|
|
* @throws std::invalid_argument if no such k-shortest path exists
|
|
*/
|
|
void computeKSP(unsigned long k);
|
|
|
|
/*!
|
|
* Recurses over the path and prints the nodes. Intended for debugging.
|
|
*/
|
|
void printKShortestPath(state_t targetNode, unsigned long k, bool head=true) const;
|
|
|
|
/*!
|
|
* Returns actual distance for real edges, 1 for edges to meta-target.
|
|
*/
|
|
T getEdgeDistance(state_t tailNode, state_t headNode) const;
|
|
|
|
|
|
// --- tiny helper fcts ---
|
|
|
|
inline bool isInitialState(state_t node) const {
|
|
return find(initialStates.begin(), initialStates.end(), node) != initialStates.end();
|
|
}
|
|
|
|
inline bool isMetaTargetPredecessor(state_t node) const {
|
|
return targetProbMap.count(node) == 1;
|
|
}
|
|
|
|
// I dislike this. But it is necessary if we want to handle those ugly I-P matrices
|
|
inline T convertDistance(state_t tailNode, state_t headNode, T distance) const {
|
|
if (matrixFormat == MatrixFormat::straight) {
|
|
return distance;
|
|
} else {
|
|
if (tailNode == headNode) {
|
|
// diagonal: 1-p = dist
|
|
return one<T>() - distance;
|
|
} else {
|
|
// non-diag: -p = dist
|
|
return zero<T>() - distance;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Returns a map where each state of the input BitVector is mapped to 1 (`one<T>`).
|
|
*/
|
|
inline StateProbMap allProbOneMap(BitVector bitVector) const {
|
|
StateProbMap stateProbMap;
|
|
for (state_t node : bitVector) {
|
|
stateProbMap.emplace(node, one<T>()); // FIXME check rvalue warning (here and below)
|
|
}
|
|
return stateProbMap;
|
|
}
|
|
|
|
/*!
|
|
* Given a vector of probabilities so that the `i`th entry corresponds to the
|
|
* probability of state `i`, returns an equivalent map of only the non-zero entries.
|
|
*/
|
|
inline std::unordered_map<state_t, T> vectorToMap(std::vector<T> probVector) const {
|
|
//assert(probVector.size() == numStates); // numStates may not yet be initialized! // still true?
|
|
|
|
std::unordered_map<state_t, T> stateProbMap;
|
|
|
|
for (state_t i = 0; i < probVector.size(); i++) {
|
|
T probEntry = probVector[i];
|
|
|
|
// only non-zero entries (i.e. true transitions) are added to the map
|
|
if (probEntry != 0) {
|
|
assert(0 < probEntry <= 1);
|
|
stateProbMap.emplace(i, probEntry);
|
|
}
|
|
}
|
|
|
|
return stateProbMap;
|
|
}
|
|
|
|
// -----------------------
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif //STORM_UTIL_SHORTESTPATHS_H_
|