You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

80 lines
8.4 KiB

#ifndef STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_
#include "storm/storage/BitVector.h"
#include "storm/storage/MaximalEndComponent.h"
#include "storm/solver/OptimizationDirection.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/utility/NumberTraits.h"
namespace storm {
namespace modelchecker {
namespace helper {
class SparseMarkovAutomatonCslHelper {
public:
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static std::vector<ValueType> computeBoundedUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType, typename std::enable_if<!storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static std::vector<ValueType> computeBoundedUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType>
static std::vector<ValueType> computeUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType, typename RewardModelType>
static std::vector<ValueType> computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType>
static std::vector<ValueType> computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType>
static std::vector<ValueType> computeReachabilityTimes(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
private:
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename ValueType, typename std::enable_if<!storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
/*!
* Computes the long-run average value for the given maximal end component of a Markov automaton.
*
* @param dir Sets whether the long-run average is to be minimized or maximized.
* @param transitionMatrix The transition matrix of the underlying Markov automaton.
* @param markovianStates A bit vector storing all markovian states.
* @param exitRateVector A vector with exit rates for all states. Exit rates of probabilistic states are
* assumed to be zero.
* @param goalStates A bit vector indicating which states are to be considered as goal states.
* @param mec The maximal end component to consider for computing the long-run average.
* @return The long-run average of being in a goal state for the given MEC.
*/
template <typename ValueType>
static ValueType computeLraForMaximalEndComponent(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec);
/*!
* Computes the expected reward that is gained from each state before entering any of the goal states.
*
* @param dir Indicates whether minimal or maximal rewards are to be computed.
* @param transitionMatrix The transition matrix of the underlying Markov automaton.
* @param backwardTransitions The reversed transition relation of the underlying Markov automaton.
* @param goalStates The goal states that define until which point rewards are gained.
* @param stateRewards A vector that defines the reward gained in each state. For probabilistic states,
* this is an instantaneous reward that is fully gained and for Markovian states the actually gained
* reward is dependent on the expected time to stay in the state, i.e. it is gouverned by the exit rate
* of the state.
* @return A vector that contains the expected reward for each state of the model.
*/
template <typename ValueType>
static std::vector<ValueType> computeExpectedRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
};
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_ */