You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							3.9 KiB
						
					
					
				
								// Small bench routine for Eigen available in Eigen
							 | 
						|
								// (C) Desire NUENTSA WAKAM, INRIA
							 | 
						|
								
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <fstream>
							 | 
						|
								#include <iomanip>
							 | 
						|
								#include <Eigen/Jacobi>
							 | 
						|
								#include <Eigen/Householder>
							 | 
						|
								#include <Eigen/IterativeLinearSolvers>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								#include <unsupported/Eigen/SparseExtra>
							 | 
						|
								//#include <Eigen/SparseLU>
							 | 
						|
								#include <Eigen/SuperLUSupport>
							 | 
						|
								// #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
							 | 
						|
								#include <bench/BenchTimer.h>
							 | 
						|
								#include <unsupported/Eigen/IterativeSolvers>
							 | 
						|
								using namespace std;
							 | 
						|
								using namespace Eigen;
							 | 
						|
								
							 | 
						|
								int main(int argc, char **args)
							 | 
						|
								{
							 | 
						|
								  SparseMatrix<double, ColMajor> A; 
							 | 
						|
								  typedef SparseMatrix<double, ColMajor>::Index Index;
							 | 
						|
								  typedef Matrix<double, Dynamic, Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<double, Dynamic, 1> DenseRhs;
							 | 
						|
								  VectorXd b, x, tmp;
							 | 
						|
								  BenchTimer timer,totaltime; 
							 | 
						|
								  //SparseLU<SparseMatrix<double, ColMajor> >   solver;
							 | 
						|
								//   SuperLU<SparseMatrix<double, ColMajor> >   solver;
							 | 
						|
								  ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver; 
							 | 
						|
								  ifstream matrix_file; 
							 | 
						|
								  string line;
							 | 
						|
								  int  n;
							 | 
						|
								  // Set parameters
							 | 
						|
								//   solver.iparm(IPARM_THREAD_NBR) = 4;
							 | 
						|
								  /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
							 | 
						|
								  if (argc < 2) assert(false && "please, give the matrix market file ");
							 | 
						|
								  
							 | 
						|
								  timer.start();
							 | 
						|
								  totaltime.start();
							 | 
						|
								  loadMarket(A, args[1]);
							 | 
						|
								  cout << "End charging matrix " << endl;
							 | 
						|
								  bool iscomplex=false, isvector=false;
							 | 
						|
								  int sym;
							 | 
						|
								  getMarketHeader(args[1], sym, iscomplex, isvector);
							 | 
						|
								  if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
							 | 
						|
								  if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
							 | 
						|
								  if (sym != 0) { // symmetric matrices, only the lower part is stored
							 | 
						|
								    SparseMatrix<double, ColMajor> temp; 
							 | 
						|
								    temp = A;
							 | 
						|
								    A = temp.selfadjointView<Lower>();
							 | 
						|
								  }
							 | 
						|
								  timer.stop();
							 | 
						|
								  
							 | 
						|
								  n = A.cols();
							 | 
						|
								  // ====== TESTS FOR SPARSE TUTORIAL ======
							 | 
						|
								//   cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl; 
							 | 
						|
								//   SparseMatrix<double, RowMajor> mat1(A); 
							 | 
						|
								//   SparseMatrix<double, RowMajor> mat2;
							 | 
						|
								//   cout << " norm of A " << mat1.norm() << endl; ;
							 | 
						|
								//   PermutationMatrix<Dynamic, Dynamic, int> perm(n);
							 | 
						|
								//   perm.resize(n,1);
							 | 
						|
								//   perm.indices().setLinSpaced(n, 0, n-1);
							 | 
						|
								//   mat2 = perm * mat1;
							 | 
						|
								//   mat.subrows();
							 | 
						|
								//   mat2.resize(n,n); 
							 | 
						|
								//   mat2.reserve(10);
							 | 
						|
								//   mat2.setConstant();
							 | 
						|
								//   std::cout<< "NORM " << mat1.squaredNorm()<< endl;  
							 | 
						|
								
							 | 
						|
								  cout<< "Time to load the matrix " << timer.value() <<endl;
							 | 
						|
								  /* Fill the right hand side */
							 | 
						|
								
							 | 
						|
								//   solver.set_restart(374);
							 | 
						|
								  if (argc > 2)
							 | 
						|
								    loadMarketVector(b, args[2]);
							 | 
						|
								  else 
							 | 
						|
								  {
							 | 
						|
								    b.resize(n);
							 | 
						|
								    tmp.resize(n);
							 | 
						|
								//       tmp.setRandom();
							 | 
						|
								    for (int i = 0; i < n; i++) tmp(i) = i; 
							 | 
						|
								    b = A * tmp ;
							 | 
						|
								  }
							 | 
						|
								//   Scaling<SparseMatrix<double> > scal; 
							 | 
						|
								//   scal.computeRef(A);
							 | 
						|
								//   b = scal.LeftScaling().cwiseProduct(b);
							 | 
						|
								
							 | 
						|
								  /* Compute the factorization */
							 | 
						|
								  cout<< "Starting the factorization "<< endl; 
							 | 
						|
								  timer.reset();
							 | 
						|
								  timer.start(); 
							 | 
						|
								  cout<< "Size of Input Matrix "<< b.size()<<"\n\n";
							 | 
						|
								  cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n";
							 | 
						|
								  solver.compute(A);
							 | 
						|
								//   solver.analyzePattern(A);
							 | 
						|
								//   solver.factorize(A);
							 | 
						|
								  if (solver.info() != Success) {
							 | 
						|
								    std::cout<< "The solver failed \n";
							 | 
						|
								    return -1; 
							 | 
						|
								  }
							 | 
						|
								  timer.stop(); 
							 | 
						|
								  float time_comp = timer.value(); 
							 | 
						|
								  cout <<" Compute Time " << time_comp<< endl; 
							 | 
						|
								  
							 | 
						|
								  timer.reset();
							 | 
						|
								  timer.start();
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								//   x = scal.RightScaling().cwiseProduct(x);
							 | 
						|
								  timer.stop();
							 | 
						|
								  float time_solve = timer.value(); 
							 | 
						|
								  cout<< " Time to solve " << time_solve << endl; 
							 | 
						|
								 
							 | 
						|
								  /* Check the accuracy */
							 | 
						|
								  VectorXd tmp2 = b - A*x;
							 | 
						|
								  double tempNorm = tmp2.norm()/b.norm();
							 | 
						|
								  cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
							 | 
						|
								//   cout << "Iterations : " << solver.iterations() << "\n"; 
							 | 
						|
								  
							 | 
						|
								  totaltime.stop();
							 | 
						|
								  cout << "Total time " << totaltime.value() << "\n";
							 | 
						|
								//  std::cout<<x.transpose()<<"\n";
							 | 
						|
								  
							 | 
						|
								  return 0;
							 | 
						|
								}
							 |