You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.6 KiB
185 lines
5.6 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_ITERSCALING_H
|
|
#define EIGEN_ITERSCALING_H
|
|
/**
|
|
* \ingroup IterativeSolvers_Module
|
|
* \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
|
|
*
|
|
* This class can be used as a preprocessing tool to accelerate the convergence of iterative methods
|
|
*
|
|
* This feature is useful to limit the pivoting amount during LU/ILU factorization
|
|
* The scaling strategy as presented here preserves the symmetry of the problem
|
|
* NOTE It is assumed that the matrix does not have empty row or column,
|
|
*
|
|
* Example with key steps
|
|
* \code
|
|
* VectorXd x(n), b(n);
|
|
* SparseMatrix<double> A;
|
|
* // fill A and b;
|
|
* IterScaling<SparseMatrix<double> > scal;
|
|
* // Compute the left and right scaling vectors. The matrix is equilibrated at output
|
|
* scal.computeRef(A);
|
|
* // Scale the right hand side
|
|
* b = scal.LeftScaling().cwiseProduct(b);
|
|
* // Now, solve the equilibrated linear system with any available solver
|
|
*
|
|
* // Scale back the computed solution
|
|
* x = scal.RightScaling().cwiseProduct(x);
|
|
* \endcode
|
|
*
|
|
* \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix
|
|
*
|
|
* References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552
|
|
*
|
|
* \sa \ref IncompleteLUT
|
|
*/
|
|
namespace Eigen {
|
|
using std::abs;
|
|
template<typename _MatrixType>
|
|
class IterScaling
|
|
{
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
|
|
public:
|
|
IterScaling() { init(); }
|
|
|
|
IterScaling(const MatrixType& matrix)
|
|
{
|
|
init();
|
|
compute(matrix);
|
|
}
|
|
|
|
~IterScaling() { }
|
|
|
|
/**
|
|
* Compute the left and right diagonal matrices to scale the input matrix @p mat
|
|
*
|
|
* FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
|
|
*
|
|
* \sa LeftScaling() RightScaling()
|
|
*/
|
|
void compute (const MatrixType& mat)
|
|
{
|
|
int m = mat.rows();
|
|
int n = mat.cols();
|
|
eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
|
|
m_left.resize(m);
|
|
m_right.resize(n);
|
|
m_left.setOnes();
|
|
m_right.setOnes();
|
|
m_matrix = mat;
|
|
VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors
|
|
Dr.resize(m); Dc.resize(n);
|
|
DrRes.resize(m); DcRes.resize(n);
|
|
double EpsRow = 1.0, EpsCol = 1.0;
|
|
int its = 0;
|
|
do
|
|
{ // Iterate until the infinite norm of each row and column is approximately 1
|
|
// Get the maximum value in each row and column
|
|
Dr.setZero(); Dc.setZero();
|
|
for (int k=0; k<m_matrix.outerSize(); ++k)
|
|
{
|
|
for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
|
|
{
|
|
if ( Dr(it.row()) < abs(it.value()) )
|
|
Dr(it.row()) = abs(it.value());
|
|
|
|
if ( Dc(it.col()) < abs(it.value()) )
|
|
Dc(it.col()) = abs(it.value());
|
|
}
|
|
}
|
|
for (int i = 0; i < m; ++i)
|
|
{
|
|
Dr(i) = std::sqrt(Dr(i));
|
|
Dc(i) = std::sqrt(Dc(i));
|
|
}
|
|
// Save the scaling factors
|
|
for (int i = 0; i < m; ++i)
|
|
{
|
|
m_left(i) /= Dr(i);
|
|
m_right(i) /= Dc(i);
|
|
}
|
|
// Scale the rows and the columns of the matrix
|
|
DrRes.setZero(); DcRes.setZero();
|
|
for (int k=0; k<m_matrix.outerSize(); ++k)
|
|
{
|
|
for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
|
|
{
|
|
it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) );
|
|
// Accumulate the norms of the row and column vectors
|
|
if ( DrRes(it.row()) < abs(it.value()) )
|
|
DrRes(it.row()) = abs(it.value());
|
|
|
|
if ( DcRes(it.col()) < abs(it.value()) )
|
|
DcRes(it.col()) = abs(it.value());
|
|
}
|
|
}
|
|
DrRes.array() = (1-DrRes.array()).abs();
|
|
EpsRow = DrRes.maxCoeff();
|
|
DcRes.array() = (1-DcRes.array()).abs();
|
|
EpsCol = DcRes.maxCoeff();
|
|
its++;
|
|
}while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) );
|
|
m_isInitialized = true;
|
|
}
|
|
/** Compute the left and right vectors to scale the vectors
|
|
* the input matrix is scaled with the computed vectors at output
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
void computeRef (MatrixType& mat)
|
|
{
|
|
compute (mat);
|
|
mat = m_matrix;
|
|
}
|
|
/** Get the vector to scale the rows of the matrix
|
|
*/
|
|
VectorXd& LeftScaling()
|
|
{
|
|
return m_left;
|
|
}
|
|
|
|
/** Get the vector to scale the columns of the matrix
|
|
*/
|
|
VectorXd& RightScaling()
|
|
{
|
|
return m_right;
|
|
}
|
|
|
|
/** Set the tolerance for the convergence of the iterative scaling algorithm
|
|
*/
|
|
void setTolerance(double tol)
|
|
{
|
|
m_tol = tol;
|
|
}
|
|
|
|
protected:
|
|
|
|
void init()
|
|
{
|
|
m_tol = 1e-10;
|
|
m_maxits = 5;
|
|
m_isInitialized = false;
|
|
}
|
|
|
|
MatrixType m_matrix;
|
|
mutable ComputationInfo m_info;
|
|
bool m_isInitialized;
|
|
VectorXd m_left; // Left scaling vector
|
|
VectorXd m_right; // m_right scaling vector
|
|
double m_tol;
|
|
int m_maxits; // Maximum number of iterations allowed
|
|
};
|
|
}
|
|
#endif
|