You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							326 lines
						
					
					
						
							9.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							326 lines
						
					
					
						
							9.9 KiB
						
					
					
				
								*> \brief \b SLARFT
							 | 
						|
								*
							 | 
						|
								*  =========== DOCUMENTATION ===========
							 | 
						|
								*
							 | 
						|
								* Online html documentation available at 
							 | 
						|
								*            http://www.netlib.org/lapack/explore-html/ 
							 | 
						|
								*
							 | 
						|
								*> \htmlonly
							 | 
						|
								*> Download SLARFT + dependencies 
							 | 
						|
								*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f"> 
							 | 
						|
								*> [TGZ]</a> 
							 | 
						|
								*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f"> 
							 | 
						|
								*> [ZIP]</a> 
							 | 
						|
								*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f"> 
							 | 
						|
								*> [TXT]</a>
							 | 
						|
								*> \endhtmlonly 
							 | 
						|
								*
							 | 
						|
								*  Definition:
							 | 
						|
								*  ===========
							 | 
						|
								*
							 | 
						|
								*       SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
							 | 
						|
								* 
							 | 
						|
								*       .. Scalar Arguments ..
							 | 
						|
								*       CHARACTER          DIRECT, STOREV
							 | 
						|
								*       INTEGER            K, LDT, LDV, N
							 | 
						|
								*       ..
							 | 
						|
								*       .. Array Arguments ..
							 | 
						|
								*       REAL               T( LDT, * ), TAU( * ), V( LDV, * )
							 | 
						|
								*       ..
							 | 
						|
								*  
							 | 
						|
								*
							 | 
						|
								*> \par Purpose:
							 | 
						|
								*  =============
							 | 
						|
								*>
							 | 
						|
								*> \verbatim
							 | 
						|
								*>
							 | 
						|
								*> SLARFT forms the triangular factor T of a real block reflector H
							 | 
						|
								*> of order n, which is defined as a product of k elementary reflectors.
							 | 
						|
								*>
							 | 
						|
								*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
							 | 
						|
								*>
							 | 
						|
								*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
							 | 
						|
								*>
							 | 
						|
								*> If STOREV = 'C', the vector which defines the elementary reflector
							 | 
						|
								*> H(i) is stored in the i-th column of the array V, and
							 | 
						|
								*>
							 | 
						|
								*>    H  =  I - V * T * V**T
							 | 
						|
								*>
							 | 
						|
								*> If STOREV = 'R', the vector which defines the elementary reflector
							 | 
						|
								*> H(i) is stored in the i-th row of the array V, and
							 | 
						|
								*>
							 | 
						|
								*>    H  =  I - V**T * T * V
							 | 
						|
								*> \endverbatim
							 | 
						|
								*
							 | 
						|
								*  Arguments:
							 | 
						|
								*  ==========
							 | 
						|
								*
							 | 
						|
								*> \param[in] DIRECT
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          DIRECT is CHARACTER*1
							 | 
						|
								*>          Specifies the order in which the elementary reflectors are
							 | 
						|
								*>          multiplied to form the block reflector:
							 | 
						|
								*>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
							 | 
						|
								*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] STOREV
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          STOREV is CHARACTER*1
							 | 
						|
								*>          Specifies how the vectors which define the elementary
							 | 
						|
								*>          reflectors are stored (see also Further Details):
							 | 
						|
								*>          = 'C': columnwise
							 | 
						|
								*>          = 'R': rowwise
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] N
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          N is INTEGER
							 | 
						|
								*>          The order of the block reflector H. N >= 0.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] K
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          K is INTEGER
							 | 
						|
								*>          The order of the triangular factor T (= the number of
							 | 
						|
								*>          elementary reflectors). K >= 1.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] V
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          V is REAL array, dimension
							 | 
						|
								*>                               (LDV,K) if STOREV = 'C'
							 | 
						|
								*>                               (LDV,N) if STOREV = 'R'
							 | 
						|
								*>          The matrix V. See further details.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] LDV
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          LDV is INTEGER
							 | 
						|
								*>          The leading dimension of the array V.
							 | 
						|
								*>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] TAU
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          TAU is REAL array, dimension (K)
							 | 
						|
								*>          TAU(i) must contain the scalar factor of the elementary
							 | 
						|
								*>          reflector H(i).
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[out] T
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          T is REAL array, dimension (LDT,K)
							 | 
						|
								*>          The k by k triangular factor T of the block reflector.
							 | 
						|
								*>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
							 | 
						|
								*>          lower triangular. The rest of the array is not used.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*> \param[in] LDT
							 | 
						|
								*> \verbatim
							 | 
						|
								*>          LDT is INTEGER
							 | 
						|
								*>          The leading dimension of the array T. LDT >= K.
							 | 
						|
								*> \endverbatim
							 | 
						|
								*
							 | 
						|
								*  Authors:
							 | 
						|
								*  ========
							 | 
						|
								*
							 | 
						|
								*> \author Univ. of Tennessee 
							 | 
						|
								*> \author Univ. of California Berkeley 
							 | 
						|
								*> \author Univ. of Colorado Denver 
							 | 
						|
								*> \author NAG Ltd. 
							 | 
						|
								*
							 | 
						|
								*> \date April 2012
							 | 
						|
								*
							 | 
						|
								*> \ingroup realOTHERauxiliary
							 | 
						|
								*
							 | 
						|
								*> \par Further Details:
							 | 
						|
								*  =====================
							 | 
						|
								*>
							 | 
						|
								*> \verbatim
							 | 
						|
								*>
							 | 
						|
								*>  The shape of the matrix V and the storage of the vectors which define
							 | 
						|
								*>  the H(i) is best illustrated by the following example with n = 5 and
							 | 
						|
								*>  k = 3. The elements equal to 1 are not stored.
							 | 
						|
								*>
							 | 
						|
								*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
							 | 
						|
								*>
							 | 
						|
								*>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
							 | 
						|
								*>                   ( v1  1    )                     (     1 v2 v2 v2 )
							 | 
						|
								*>                   ( v1 v2  1 )                     (        1 v3 v3 )
							 | 
						|
								*>                   ( v1 v2 v3 )
							 | 
						|
								*>                   ( v1 v2 v3 )
							 | 
						|
								*>
							 | 
						|
								*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
							 | 
						|
								*>
							 | 
						|
								*>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
							 | 
						|
								*>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
							 | 
						|
								*>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
							 | 
						|
								*>                   (     1 v3 )
							 | 
						|
								*>                   (        1 )
							 | 
						|
								*> \endverbatim
							 | 
						|
								*>
							 | 
						|
								*  =====================================================================
							 | 
						|
								      SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
							 | 
						|
								*
							 | 
						|
								*  -- LAPACK auxiliary routine (version 3.4.1) --
							 | 
						|
								*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
							 | 
						|
								*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
							 | 
						|
								*     April 2012
							 | 
						|
								*
							 | 
						|
								*     .. Scalar Arguments ..
							 | 
						|
								      CHARACTER          DIRECT, STOREV
							 | 
						|
								      INTEGER            K, LDT, LDV, N
							 | 
						|
								*     ..
							 | 
						|
								*     .. Array Arguments ..
							 | 
						|
								      REAL               T( LDT, * ), TAU( * ), V( LDV, * )
							 | 
						|
								*     ..
							 | 
						|
								*
							 | 
						|
								*  =====================================================================
							 | 
						|
								*
							 | 
						|
								*     .. Parameters ..
							 | 
						|
								      REAL               ONE, ZERO
							 | 
						|
								      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
							 | 
						|
								*     ..
							 | 
						|
								*     .. Local Scalars ..
							 | 
						|
								      INTEGER            I, J, PREVLASTV, LASTV
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Subroutines ..
							 | 
						|
								      EXTERNAL           SGEMV, STRMV
							 | 
						|
								*     ..
							 | 
						|
								*     .. External Functions ..
							 | 
						|
								      LOGICAL            LSAME
							 | 
						|
								      EXTERNAL           LSAME
							 | 
						|
								*     ..
							 | 
						|
								*     .. Executable Statements ..
							 | 
						|
								*
							 | 
						|
								*     Quick return if possible
							 | 
						|
								*
							 | 
						|
								      IF( N.EQ.0 )
							 | 
						|
								     $   RETURN
							 | 
						|
								*
							 | 
						|
								      IF( LSAME( DIRECT, 'F' ) ) THEN
							 | 
						|
								         PREVLASTV = N
							 | 
						|
								         DO I = 1, K
							 | 
						|
								            PREVLASTV = MAX( I, PREVLASTV )
							 | 
						|
								            IF( TAU( I ).EQ.ZERO ) THEN
							 | 
						|
								*
							 | 
						|
								*              H(i)  =  I
							 | 
						|
								*
							 | 
						|
								               DO J = 1, I
							 | 
						|
								                  T( J, I ) = ZERO
							 | 
						|
								               END DO
							 | 
						|
								            ELSE
							 | 
						|
								*
							 | 
						|
								*              general case
							 | 
						|
								*
							 | 
						|
								               IF( LSAME( STOREV, 'C' ) ) THEN
							 | 
						|
								*                 Skip any trailing zeros.
							 | 
						|
								                  DO LASTV = N, I+1, -1
							 | 
						|
								                     IF( V( LASTV, I ).NE.ZERO ) EXIT
							 | 
						|
								                  END DO
							 | 
						|
								                  DO J = 1, I-1
							 | 
						|
								                     T( J, I ) = -TAU( I ) * V( I , J )
							 | 
						|
								                  END DO   
							 | 
						|
								                  J = MIN( LASTV, PREVLASTV )
							 | 
						|
								*
							 | 
						|
								*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
							 | 
						|
								*
							 | 
						|
								                  CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ),
							 | 
						|
								     $                        V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
							 | 
						|
								     $                        T( 1, I ), 1 )
							 | 
						|
								               ELSE
							 | 
						|
								*                 Skip any trailing zeros.
							 | 
						|
								                  DO LASTV = N, I+1, -1
							 | 
						|
								                     IF( V( I, LASTV ).NE.ZERO ) EXIT
							 | 
						|
								                  END DO
							 | 
						|
								                  DO J = 1, I-1
							 | 
						|
								                     T( J, I ) = -TAU( I ) * V( J , I )
							 | 
						|
								                  END DO   
							 | 
						|
								                  J = MIN( LASTV, PREVLASTV )
							 | 
						|
								*
							 | 
						|
								*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
							 | 
						|
								*
							 | 
						|
								                  CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ),
							 | 
						|
								     $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, 
							 | 
						|
								     $                        ONE, T( 1, I ), 1 )
							 | 
						|
								               END IF
							 | 
						|
								*
							 | 
						|
								*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
							 | 
						|
								*
							 | 
						|
								               CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
							 | 
						|
								     $                     LDT, T( 1, I ), 1 )
							 | 
						|
								               T( I, I ) = TAU( I )
							 | 
						|
								               IF( I.GT.1 ) THEN
							 | 
						|
								                  PREVLASTV = MAX( PREVLASTV, LASTV )
							 | 
						|
								               ELSE
							 | 
						|
								                  PREVLASTV = LASTV
							 | 
						|
								               END IF
							 | 
						|
								            END IF
							 | 
						|
								         END DO
							 | 
						|
								      ELSE
							 | 
						|
								         PREVLASTV = 1
							 | 
						|
								         DO I = K, 1, -1
							 | 
						|
								            IF( TAU( I ).EQ.ZERO ) THEN
							 | 
						|
								*
							 | 
						|
								*              H(i)  =  I
							 | 
						|
								*
							 | 
						|
								               DO J = I, K
							 | 
						|
								                  T( J, I ) = ZERO
							 | 
						|
								               END DO
							 | 
						|
								            ELSE
							 | 
						|
								*
							 | 
						|
								*              general case
							 | 
						|
								*
							 | 
						|
								               IF( I.LT.K ) THEN
							 | 
						|
								                  IF( LSAME( STOREV, 'C' ) ) THEN
							 | 
						|
								*                    Skip any leading zeros.
							 | 
						|
								                     DO LASTV = 1, I-1
							 | 
						|
								                        IF( V( LASTV, I ).NE.ZERO ) EXIT
							 | 
						|
								                     END DO
							 | 
						|
								                     DO J = I+1, K
							 | 
						|
								                        T( J, I ) = -TAU( I ) * V( N-K+I , J )
							 | 
						|
								                     END DO   
							 | 
						|
								                     J = MAX( LASTV, PREVLASTV )
							 | 
						|
								*
							 | 
						|
								*                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
							 | 
						|
								*
							 | 
						|
								                     CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
							 | 
						|
								     $                           V( J, I+1 ), LDV, V( J, I ), 1, ONE,
							 | 
						|
								     $                           T( I+1, I ), 1 )
							 | 
						|
								                  ELSE
							 | 
						|
								*                    Skip any leading zeros.
							 | 
						|
								                     DO LASTV = 1, I-1
							 | 
						|
								                        IF( V( I, LASTV ).NE.ZERO ) EXIT
							 | 
						|
								                     END DO
							 | 
						|
								                     DO J = I+1, K
							 | 
						|
								                        T( J, I ) = -TAU( I ) * V( J, N-K+I )
							 | 
						|
								                     END DO   
							 | 
						|
								                     J = MAX( LASTV, PREVLASTV )
							 | 
						|
								*
							 | 
						|
								*                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
							 | 
						|
								*
							 | 
						|
								                     CALL SGEMV( 'No transpose', K-I, N-K+I-J,
							 | 
						|
								     $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
							 | 
						|
								     $                    ONE, T( I+1, I ), 1 )
							 | 
						|
								                  END IF
							 | 
						|
								*
							 | 
						|
								*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
							 | 
						|
								*
							 | 
						|
								                  CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
							 | 
						|
								     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
							 | 
						|
								                  IF( I.GT.1 ) THEN
							 | 
						|
								                     PREVLASTV = MIN( PREVLASTV, LASTV )
							 | 
						|
								                  ELSE
							 | 
						|
								                     PREVLASTV = LASTV
							 | 
						|
								                  END IF
							 | 
						|
								               END IF
							 | 
						|
								               T( I, I ) = TAU( I )
							 | 
						|
								            END IF
							 | 
						|
								         END DO
							 | 
						|
								      END IF
							 | 
						|
								      RETURN
							 | 
						|
								*
							 | 
						|
								*     End of SLARFT
							 | 
						|
								*
							 | 
						|
								      END
							 |