You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2988 lines
						
					
					
						
							110 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							2988 lines
						
					
					
						
							110 KiB
						
					
					
				
								// ----------------------------------------------------------------------
							 | 
						|
								// Copyright (c) 2016, Gregory Popovitch - greg7mdp@gmail.com
							 | 
						|
								// All rights reserved.
							 | 
						|
								// 
							 | 
						|
								// This work is derived from Google's sparsehash library
							 | 
						|
								//
							 | 
						|
								// Copyright (c) 2010, Google Inc.
							 | 
						|
								// All rights reserved.
							 | 
						|
								//
							 | 
						|
								// Redistribution and use in source and binary forms, with or without
							 | 
						|
								// modification, are permitted provided that the following conditions are
							 | 
						|
								// met:
							 | 
						|
								//
							 | 
						|
								//     * Redistributions of source code must retain the above copyright
							 | 
						|
								// notice, this list of conditions and the following disclaimer.
							 | 
						|
								//     * Redistributions in binary form must reproduce the above
							 | 
						|
								// copyright notice, this list of conditions and the following disclaimer
							 | 
						|
								// in the documentation and/or other materials provided with the
							 | 
						|
								// distribution.
							 | 
						|
								//     * Neither the name of Google Inc. nor the names of its
							 | 
						|
								// contributors may be used to endorse or promote products derived from
							 | 
						|
								// this software without specific prior written permission.
							 | 
						|
								//
							 | 
						|
								// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
							 | 
						|
								// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
							 | 
						|
								// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
							 | 
						|
								// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
							 | 
						|
								// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
							 | 
						|
								// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
							 | 
						|
								// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						|
								// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
							 | 
						|
								// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
							 | 
						|
								// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
							 | 
						|
								// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						|
								// ----------------------------------------------------------------------
							 | 
						|
								
							 | 
						|
								#ifdef _MSC_VER 
							 | 
						|
								    #pragma warning( disable : 4820 ) // '6' bytes padding added after data member...
							 | 
						|
								    #pragma warning( disable : 4710 ) // function not inlined
							 | 
						|
								    #pragma warning( disable : 4514 ) // unreferenced inline function has been removed
							 | 
						|
								    #pragma warning( disable : 4996 ) // 'fopen': This function or variable may be unsafe
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#include <sparsepp/spp.h>
							 | 
						|
								
							 | 
						|
								#ifdef _MSC_VER 
							 | 
						|
								    #pragma warning( disable : 4127 ) // conditional expression is constant
							 | 
						|
								    #pragma warning(push, 0)
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#include <math.h>
							 | 
						|
								#include <stddef.h>   // for size_t
							 | 
						|
								#include <stdio.h>
							 | 
						|
								#include <stdlib.h>
							 | 
						|
								#include <string.h>
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <set>
							 | 
						|
								#include <sstream>
							 | 
						|
								#include <typeinfo>   // for class typeinfo (returned by typeid)
							 | 
						|
								#include <vector>
							 | 
						|
								#include <stdexcept>   // for length_error
							 | 
						|
								
							 | 
						|
								namespace sparsehash_internal = SPP_NAMESPACE::sparsehash_internal;
							 | 
						|
								using SPP_NAMESPACE::sparsetable;
							 | 
						|
								using SPP_NAMESPACE::sparse_hashtable;
							 | 
						|
								using SPP_NAMESPACE::sparse_hash_map;
							 | 
						|
								using SPP_NAMESPACE::sparse_hash_set;
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								#ifndef _MSC_VER   // windows defines its own version
							 | 
						|
								    #define _strdup strdup
							 | 
						|
								    #ifdef __MINGW32__ // mingw has trouble writing to /tmp
							 | 
						|
								        static std::string TmpFile(const char* basename)
							 | 
						|
								        {
							 | 
						|
								             return std::string("./#") + basename;
							 | 
						|
								        }
							 | 
						|
								    #endif
							 | 
						|
								#else
							 | 
						|
								    #pragma warning(disable : 4996)
							 | 
						|
								    #define snprintf sprintf_s 
							 | 
						|
								    #define WIN32_LEAN_AND_MEAN  /* We always want minimal includes */
							 | 
						|
								    #include <windows.h>
							 | 
						|
								    std::string TmpFile(const char* basename) 
							 | 
						|
								    {
							 | 
						|
								        char tmppath_buffer[1024];
							 | 
						|
								        int tmppath_len = GetTempPathA(sizeof(tmppath_buffer), tmppath_buffer);
							 | 
						|
								        if (tmppath_len <= 0 || tmppath_len >= sizeof(tmppath_buffer))
							 | 
						|
								            return basename;           // an error, so just bail on tmppath
							 | 
						|
								
							 | 
						|
								        sprintf_s(tmppath_buffer + tmppath_len, 1024 - tmppath_len, "\\%s", basename);
							 | 
						|
								        return tmppath_buffer;
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef _MSC_VER 
							 | 
						|
								    #pragma warning(pop)
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// This is the "default" interface, which just passes everything
							 | 
						|
								// through to the underlying hashtable.  You'll need to subclass it to
							 | 
						|
								// specialize behavior for an individual hashtable.
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class HT>
							 | 
						|
								class BaseHashtableInterface 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    virtual ~BaseHashtableInterface() {}
							 | 
						|
								
							 | 
						|
								    typedef typename HT::key_type key_type;
							 | 
						|
								    typedef typename HT::value_type value_type;
							 | 
						|
								    typedef typename HT::hasher hasher;
							 | 
						|
								    typedef typename HT::key_equal key_equal;
							 | 
						|
								    typedef typename HT::allocator_type allocator_type;
							 | 
						|
								
							 | 
						|
								    typedef typename HT::size_type size_type;
							 | 
						|
								    typedef typename HT::difference_type difference_type;
							 | 
						|
								    typedef typename HT::pointer pointer;
							 | 
						|
								    typedef typename HT::const_pointer const_pointer;
							 | 
						|
								    typedef typename HT::reference reference;
							 | 
						|
								    typedef typename HT::const_reference const_reference;
							 | 
						|
								
							 | 
						|
								    class const_iterator;
							 | 
						|
								
							 | 
						|
								    class iterator : public HT::iterator 
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        iterator() : parent_(NULL) { }   // this allows code like "iterator it;"
							 | 
						|
								        iterator(typename HT::iterator it, const BaseHashtableInterface* parent)
							 | 
						|
								            : HT::iterator(it), parent_(parent) { }
							 | 
						|
								        key_type key() { return parent_->it_to_key(*this); }
							 | 
						|
								
							 | 
						|
								    private:
							 | 
						|
								        friend class BaseHashtableInterface::const_iterator;  // for its ctor
							 | 
						|
								        const BaseHashtableInterface* parent_;
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    class const_iterator : public HT::const_iterator 
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        const_iterator() : parent_(NULL) { }
							 | 
						|
								        const_iterator(typename HT::const_iterator it,
							 | 
						|
								                       const BaseHashtableInterface* parent)
							 | 
						|
								            : HT::const_iterator(it), parent_(parent) { }
							 | 
						|
								
							 | 
						|
								        const_iterator(typename HT::iterator it,
							 | 
						|
								                       BaseHashtableInterface* parent)
							 | 
						|
								            : HT::const_iterator(it), parent_(parent) { }
							 | 
						|
								
							 | 
						|
								        // The parameter type here *should* just be "iterator", but MSVC
							 | 
						|
								        // gets confused by that, so I'm overly specific.
							 | 
						|
								        const_iterator(typename BaseHashtableInterface<HT>::iterator it)
							 | 
						|
								            : HT::const_iterator(it), parent_(it.parent_) { }
							 | 
						|
								
							 | 
						|
								        key_type key() { return parent_->it_to_key(*this); }
							 | 
						|
								
							 | 
						|
								    private:
							 | 
						|
								        const BaseHashtableInterface* parent_;
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    class const_local_iterator;
							 | 
						|
								
							 | 
						|
								    class local_iterator : public HT::local_iterator 
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        local_iterator() : parent_(NULL) { }
							 | 
						|
								        local_iterator(typename HT::local_iterator it,
							 | 
						|
								                       const BaseHashtableInterface* parent)
							 | 
						|
								            : HT::local_iterator(it), parent_(parent) { }
							 | 
						|
								        key_type key() { return parent_->it_to_key(*this); }
							 | 
						|
								
							 | 
						|
								    private:
							 | 
						|
								        friend class BaseHashtableInterface::const_local_iterator;  // for its ctor
							 | 
						|
								        const BaseHashtableInterface* parent_;
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    class const_local_iterator : public HT::const_local_iterator 
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        const_local_iterator() : parent_(NULL) { }
							 | 
						|
								        const_local_iterator(typename HT::const_local_iterator it,
							 | 
						|
								                             const BaseHashtableInterface* parent)
							 | 
						|
								            : HT::const_local_iterator(it), parent_(parent) { }
							 | 
						|
								        const_local_iterator(typename HT::local_iterator it,
							 | 
						|
								                             BaseHashtableInterface* parent)
							 | 
						|
								            : HT::const_local_iterator(it), parent_(parent) { }
							 | 
						|
								        const_local_iterator(local_iterator it)
							 | 
						|
								            : HT::const_local_iterator(it), parent_(it.parent_) { }
							 | 
						|
								        key_type key() { return parent_->it_to_key(*this); }
							 | 
						|
								
							 | 
						|
								    private:
							 | 
						|
								        const BaseHashtableInterface* parent_;
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    iterator        begin()      { return iterator(ht_.begin(), this); }
							 | 
						|
								    iterator        end()        { return iterator(ht_.end(), this);  }
							 | 
						|
								    const_iterator begin() const { return const_iterator(ht_.begin(), this); }
							 | 
						|
								    const_iterator end() const   { return const_iterator(ht_.end(), this); }
							 | 
						|
								    local_iterator begin(size_type i) { return local_iterator(ht_.begin(i), this); }
							 | 
						|
								    local_iterator end(size_type i)   { return local_iterator(ht_.end(i), this); }
							 | 
						|
								    const_local_iterator begin(size_type i) const  { return const_local_iterator(ht_.begin(i), this); }
							 | 
						|
								    const_local_iterator end(size_type i) const    { return const_local_iterator(ht_.end(i), this); }
							 | 
						|
								
							 | 
						|
								    hasher hash_funct() const    { return ht_.hash_funct(); }
							 | 
						|
								    hasher hash_function() const { return ht_.hash_function(); }
							 | 
						|
								    key_equal key_eq() const     { return ht_.key_eq(); }
							 | 
						|
								    allocator_type get_allocator() const { return ht_.get_allocator(); }
							 | 
						|
								
							 | 
						|
								    BaseHashtableInterface(size_type expected_max_items_in_table,
							 | 
						|
								                           const hasher& hf,
							 | 
						|
								                           const key_equal& eql,
							 | 
						|
								                           const allocator_type& alloc)
							 | 
						|
								        : ht_(expected_max_items_in_table, hf, eql, alloc) { }
							 | 
						|
								
							 | 
						|
								    // Not all ht_'s support this constructor: you should only call it
							 | 
						|
								    // from a subclass if you know your ht supports it.  Otherwise call
							 | 
						|
								    // the previous constructor, followed by 'insert(f, l);'.
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    BaseHashtableInterface(InputIterator f, InputIterator l,
							 | 
						|
								                           size_type expected_max_items_in_table,
							 | 
						|
								                           const hasher& hf,
							 | 
						|
								                           const key_equal& eql,
							 | 
						|
								                           const allocator_type& alloc)
							 | 
						|
								        : ht_(f, l, expected_max_items_in_table, hf, eql, alloc) {
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // This is the version of the constructor used by dense_*, which
							 | 
						|
								    // requires an empty key in the constructor.
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    BaseHashtableInterface(InputIterator f, InputIterator l, key_type empty_k,
							 | 
						|
								                           size_type expected_max_items_in_table,
							 | 
						|
								                           const hasher& hf,
							 | 
						|
								                           const key_equal& eql,
							 | 
						|
								                           const allocator_type& alloc)
							 | 
						|
								        : ht_(f, l, empty_k, expected_max_items_in_table, hf, eql, alloc) {
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // This is the constructor appropriate for {dense,sparse}hashtable.
							 | 
						|
								    template <class ExtractKey, class SetKey>
							 | 
						|
								    BaseHashtableInterface(size_type expected_max_items_in_table,
							 | 
						|
								                           const hasher& hf,
							 | 
						|
								                           const key_equal& eql,
							 | 
						|
								                           const ExtractKey& ek,
							 | 
						|
								                           const SetKey& sk,
							 | 
						|
								                           const allocator_type& alloc)
							 | 
						|
								        : ht_(expected_max_items_in_table, hf, eql, ek, sk, alloc) { }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    void clear() { ht_.clear(); }
							 | 
						|
								    void swap(BaseHashtableInterface& other) { ht_.swap(other.ht_); }
							 | 
						|
								
							 | 
						|
								    // Only part of the API for some hashtable implementations.
							 | 
						|
								    void clear_no_resize() { clear(); }
							 | 
						|
								
							 | 
						|
								    size_type size() const             { return ht_.size(); }
							 | 
						|
								    size_type max_size() const         { return ht_.max_size(); }
							 | 
						|
								    bool empty() const                 { return ht_.empty(); }
							 | 
						|
								    size_type bucket_count() const     { return ht_.bucket_count(); }
							 | 
						|
								    size_type max_bucket_count() const { return ht_.max_bucket_count(); }
							 | 
						|
								
							 | 
						|
								    size_type bucket_size(size_type i) const {
							 | 
						|
								        return ht_.bucket_size(i);
							 | 
						|
								    }
							 | 
						|
								    size_type bucket(const key_type& key) const {
							 | 
						|
								        return ht_.bucket(key);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    float load_factor() const           { return ht_.load_factor(); }
							 | 
						|
								    float max_load_factor() const       { return ht_.max_load_factor(); }
							 | 
						|
								    void  max_load_factor(float grow)   { ht_.max_load_factor(grow); }
							 | 
						|
								    float min_load_factor() const       { return ht_.min_load_factor(); }
							 | 
						|
								    void  min_load_factor(float shrink) { ht_.min_load_factor(shrink); }
							 | 
						|
								    void  set_resizing_parameters(float shrink, float grow) {
							 | 
						|
								        ht_.set_resizing_parameters(shrink, grow);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    void resize(size_type hint)    { ht_.resize(hint); }
							 | 
						|
								    void rehash(size_type hint)    { ht_.rehash(hint); }
							 | 
						|
								
							 | 
						|
								    iterator find(const key_type& key) {
							 | 
						|
								        return iterator(ht_.find(key), this);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    const_iterator find(const key_type& key) const {
							 | 
						|
								        return const_iterator(ht_.find(key), this);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // Rather than try to implement operator[], which doesn't make much
							 | 
						|
								    // sense for set types, we implement two methods: bracket_equal and
							 | 
						|
								    // bracket_assign.  By default, bracket_equal(a, b) returns true if
							 | 
						|
								    // ht[a] == b, and false otherwise.  (Note that this follows
							 | 
						|
								    // operator[] semantics exactly, including inserting a if it's not
							 | 
						|
								    // already in the hashtable, before doing the equality test.)  For
							 | 
						|
								    // sets, which have no operator[], b is ignored, and bracket_equal
							 | 
						|
								    // returns true if key is in the set and false otherwise.
							 | 
						|
								    // bracket_assign(a, b) is equivalent to ht[a] = b.  For sets, b is
							 | 
						|
								    // ignored, and bracket_assign is equivalent to ht.insert(a).
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    bool bracket_equal(const key_type& key, const AssignValue& expected) {
							 | 
						|
								        return ht_[key] == expected;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    void bracket_assign(const key_type& key, const AssignValue& value) {
							 | 
						|
								        ht_[key] = value;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    size_type count(const key_type& key) const { return ht_.count(key); }
							 | 
						|
								
							 | 
						|
								    std::pair<iterator, iterator> equal_range(const key_type& key) 
							 | 
						|
								    {
							 | 
						|
								        std::pair<typename HT::iterator, typename HT::iterator> r
							 | 
						|
								            = ht_.equal_range(key);
							 | 
						|
								        return std::pair<iterator, iterator>(iterator(r.first, this),
							 | 
						|
								                                             iterator(r.second, this));
							 | 
						|
								    }
							 | 
						|
								    std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const 
							 | 
						|
								    {
							 | 
						|
								        std::pair<typename HT::const_iterator, typename HT::const_iterator> r
							 | 
						|
								            = ht_.equal_range(key);
							 | 
						|
								        return std::pair<const_iterator, const_iterator>(
							 | 
						|
								            const_iterator(r.first, this), const_iterator(r.second, this));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    const_iterator random_element(class ACMRandom* r) const {
							 | 
						|
								        return const_iterator(ht_.random_element(r), this);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    iterator random_element(class ACMRandom* r)  {
							 | 
						|
								        return iterator(ht_.random_element(r), this);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    std::pair<iterator, bool> insert(const value_type& obj) {
							 | 
						|
								        std::pair<typename HT::iterator, bool> r = ht_.insert(obj);
							 | 
						|
								        return std::pair<iterator, bool>(iterator(r.first, this), r.second);
							 | 
						|
								    }
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    void insert(InputIterator f, InputIterator l) {
							 | 
						|
								        ht_.insert(f, l);
							 | 
						|
								    }
							 | 
						|
								    void insert(typename HT::const_iterator f, typename HT::const_iterator l) {
							 | 
						|
								        ht_.insert(f, l);
							 | 
						|
								    }
							 | 
						|
								    iterator insert(typename HT::iterator, const value_type& obj) {
							 | 
						|
								        return iterator(insert(obj).first, this);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // These will commonly need to be overridden by the child.
							 | 
						|
								    void set_empty_key(const key_type& k) { ht_.set_empty_key(k); }
							 | 
						|
								    void clear_empty_key() { ht_.clear_empty_key(); }
							 | 
						|
								    key_type empty_key() const { return ht_.empty_key(); }
							 | 
						|
								
							 | 
						|
								    void set_deleted_key(const key_type& k) { ht_.set_deleted_key(k); }
							 | 
						|
								    void clear_deleted_key() { ht_.clear_deleted_key(); }
							 | 
						|
								
							 | 
						|
								    size_type erase(const key_type& key)   { return ht_.erase(key); }
							 | 
						|
								    void erase(typename HT::iterator it)   { ht_.erase(it); }
							 | 
						|
								    void erase(typename HT::iterator f, typename HT::iterator l) {
							 | 
						|
								        ht_.erase(f, l);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    bool operator==(const BaseHashtableInterface& other) const {
							 | 
						|
								        return ht_ == other.ht_;
							 | 
						|
								    }
							 | 
						|
								    bool operator!=(const BaseHashtableInterface& other) const {
							 | 
						|
								        return ht_ != other.ht_;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template <typename ValueSerializer, typename OUTPUT>
							 | 
						|
								    bool serialize(ValueSerializer serializer, OUTPUT *fp) {
							 | 
						|
								        return ht_.serialize(serializer, fp);
							 | 
						|
								    }
							 | 
						|
								    template <typename ValueSerializer, typename INPUT>
							 | 
						|
								    bool unserialize(ValueSerializer serializer, INPUT *fp) {
							 | 
						|
								        return ht_.unserialize(serializer, fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template <typename OUTPUT>
							 | 
						|
								    bool write_metadata(OUTPUT *fp) {
							 | 
						|
								        return ht_.write_metadata(fp);
							 | 
						|
								    }
							 | 
						|
								    template <typename INPUT>
							 | 
						|
								    bool read_metadata(INPUT *fp) {
							 | 
						|
								        return ht_.read_metadata(fp);
							 | 
						|
								    }
							 | 
						|
								    template <typename OUTPUT>
							 | 
						|
								    bool write_nopointer_data(OUTPUT *fp) {
							 | 
						|
								        return ht_.write_nopointer_data(fp);
							 | 
						|
								    }
							 | 
						|
								    template <typename INPUT>
							 | 
						|
								    bool read_nopointer_data(INPUT *fp) {
							 | 
						|
								        return ht_.read_nopointer_data(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // low-level stats
							 | 
						|
								    int num_table_copies() const { return (int)ht_.num_table_copies(); }
							 | 
						|
								
							 | 
						|
								    // Not part of the hashtable API, but is provided to make testing easier.
							 | 
						|
								    virtual key_type get_key(const value_type& value) const = 0;
							 | 
						|
								    // All subclasses should define get_data(value_type) as well.  I don't
							 | 
						|
								    // provide an abstract-virtual definition here, because the return type
							 | 
						|
								    // differs between subclasses (not all subclasses define data_type).
							 | 
						|
								    //virtual data_type get_data(const value_type& value) const = 0;
							 | 
						|
								    //virtual data_type default_data() const = 0;
							 | 
						|
								
							 | 
						|
								    // These allow introspection into the interface.  "Supports" means
							 | 
						|
								    // that the implementation of this functionality isn't a noop.
							 | 
						|
								    virtual bool supports_clear_no_resize() const = 0;
							 | 
						|
								    virtual bool supports_empty_key() const = 0;
							 | 
						|
								    virtual bool supports_deleted_key() const = 0;
							 | 
						|
								    virtual bool supports_brackets() const = 0;     // has a 'real' operator[]
							 | 
						|
								    virtual bool supports_readwrite() const = 0;
							 | 
						|
								    virtual bool supports_num_table_copies() const = 0;
							 | 
						|
								    virtual bool supports_serialization() const = 0;
							 | 
						|
								
							 | 
						|
								protected:
							 | 
						|
								    HT ht_;
							 | 
						|
								
							 | 
						|
								    // These are what subclasses have to define to get class-specific behavior
							 | 
						|
								    virtual key_type it_to_key(const iterator& it) const = 0;
							 | 
						|
								    virtual key_type it_to_key(const const_iterator& it) const = 0;
							 | 
						|
								    virtual key_type it_to_key(const local_iterator& it) const = 0;
							 | 
						|
								    virtual key_type it_to_key(const const_local_iterator& it) const = 0;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class Key, class T,
							 | 
						|
								          class HashFcn  = SPP_HASH_CLASS<Key>,
							 | 
						|
								          class EqualKey = std::equal_to<Key>,
							 | 
						|
								          class Alloc    = SPP_DEFAULT_ALLOCATOR<std::pair<const Key, T> > >
							 | 
						|
								class HashtableInterface_SparseHashMap
							 | 
						|
								    : public BaseHashtableInterface< sparse_hash_map<Key, T, HashFcn,
							 | 
						|
								                                                     EqualKey, Alloc> >
							 | 
						|
								{
							 | 
						|
								private:
							 | 
						|
								    typedef sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc> ht;
							 | 
						|
								    typedef BaseHashtableInterface<ht> p;  // parent
							 | 
						|
								
							 | 
						|
								public:
							 | 
						|
								    explicit HashtableInterface_SparseHashMap(
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
							 | 
						|
								
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    HashtableInterface_SparseHashMap(
							 | 
						|
								        InputIterator f, InputIterator l,
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
							 | 
						|
								
							 | 
						|
								    typename p::key_type get_key(const typename p::value_type& value) const {
							 | 
						|
								        return value.first;
							 | 
						|
								    }
							 | 
						|
								    typename ht::data_type get_data(const typename p::value_type& value) const {
							 | 
						|
								        return value.second;
							 | 
						|
								    }
							 | 
						|
								    typename ht::data_type default_data() const {
							 | 
						|
								        return typename ht::data_type();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    bool supports_clear_no_resize() const { return false; }
							 | 
						|
								    bool supports_empty_key() const { return false; }
							 | 
						|
								    bool supports_deleted_key() const { return false; }
							 | 
						|
								    bool supports_brackets() const { return true; }
							 | 
						|
								    bool supports_readwrite() const { return true; }
							 | 
						|
								    bool supports_num_table_copies() const { return false; }
							 | 
						|
								    bool supports_serialization() const { return true; }
							 | 
						|
								
							 | 
						|
								    void set_empty_key(const typename p::key_type&) { }
							 | 
						|
								    void clear_empty_key() { }
							 | 
						|
								    typename p::key_type empty_key() const { return typename p::key_type(); }
							 | 
						|
								
							 | 
						|
								    int num_table_copies() const { return 0; }
							 | 
						|
								
							 | 
						|
								    typedef typename ht::NopointerSerializer NopointerSerializer;
							 | 
						|
								
							 | 
						|
								protected:
							 | 
						|
								    template <class K2, class T2, class H2, class E2, class A2>
							 | 
						|
								    friend void swap(HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& a,
							 | 
						|
								                     HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& b);
							 | 
						|
								
							 | 
						|
								    typename p::key_type it_to_key(const typename p::iterator& it) const {
							 | 
						|
								        return it->first;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_iterator& it) const {
							 | 
						|
								        return it->first;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::local_iterator& it) const {
							 | 
						|
								        return it->first;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_local_iterator& it) const {
							 | 
						|
								        return it->first;
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class K, class T, class H, class E, class A>
							 | 
						|
								void swap(HashtableInterface_SparseHashMap<K,T,H,E,A>& a,
							 | 
						|
								          HashtableInterface_SparseHashMap<K,T,H,E,A>& b) 
							 | 
						|
								{
							 | 
						|
								    swap(a.ht_, b.ht_);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class Value,
							 | 
						|
								          class HashFcn  = SPP_HASH_CLASS<Value>,
							 | 
						|
								          class EqualKey = std::equal_to<Value>,
							 | 
						|
								          class Alloc    = SPP_DEFAULT_ALLOCATOR<Value> >
							 | 
						|
								class HashtableInterface_SparseHashSet
							 | 
						|
								    : public BaseHashtableInterface< sparse_hash_set<Value, HashFcn,
							 | 
						|
								                                                     EqualKey, Alloc> > 
							 | 
						|
								{
							 | 
						|
								private:
							 | 
						|
								    typedef sparse_hash_set<Value, HashFcn, EqualKey, Alloc> ht;
							 | 
						|
								    typedef BaseHashtableInterface<ht> p;  // parent
							 | 
						|
								
							 | 
						|
								public:
							 | 
						|
								    explicit HashtableInterface_SparseHashSet(
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
							 | 
						|
								
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    HashtableInterface_SparseHashSet(
							 | 
						|
								        InputIterator f, InputIterator l,
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
							 | 
						|
								
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    bool bracket_equal(const typename p::key_type& key, const AssignValue&) {
							 | 
						|
								        return this->ht_.find(key) != this->ht_.end();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    void bracket_assign(const typename p::key_type& key, const AssignValue&) {
							 | 
						|
								        this->ht_.insert(key);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    typename p::key_type get_key(const typename p::value_type& value) const {
							 | 
						|
								        return value;
							 | 
						|
								    }
							 | 
						|
								    // For sets, the only 'data' is that an item is actually inserted.
							 | 
						|
								    bool get_data(const typename p::value_type&) const {
							 | 
						|
								        return true;
							 | 
						|
								    }
							 | 
						|
								    bool default_data() const {
							 | 
						|
								        return true;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    bool supports_clear_no_resize() const { return false; }
							 | 
						|
								    bool supports_empty_key() const { return false; }
							 | 
						|
								    bool supports_deleted_key() const { return false; }
							 | 
						|
								    bool supports_brackets() const { return false; }
							 | 
						|
								    bool supports_readwrite() const { return true; }
							 | 
						|
								    bool supports_num_table_copies() const { return false; }
							 | 
						|
								    bool supports_serialization() const { return true; }
							 | 
						|
								
							 | 
						|
								    void set_empty_key(const typename p::key_type&) { }
							 | 
						|
								    void clear_empty_key() { }
							 | 
						|
								    typename p::key_type empty_key() const { return typename p::key_type(); }
							 | 
						|
								
							 | 
						|
								    int num_table_copies() const { return 0; }
							 | 
						|
								
							 | 
						|
								    typedef typename ht::NopointerSerializer NopointerSerializer;
							 | 
						|
								
							 | 
						|
								protected:
							 | 
						|
								    template <class K2, class H2, class E2, class A2>
							 | 
						|
								    friend void swap(HashtableInterface_SparseHashSet<K2,H2,E2,A2>& a,
							 | 
						|
								                     HashtableInterface_SparseHashSet<K2,H2,E2,A2>& b);
							 | 
						|
								
							 | 
						|
								    typename p::key_type it_to_key(const typename p::iterator& it) const {
							 | 
						|
								        return *it;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_iterator& it) const {
							 | 
						|
								        return *it;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::local_iterator& it) const {
							 | 
						|
								        return *it;
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_local_iterator& it)
							 | 
						|
								        const {
							 | 
						|
								        return *it;
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class K, class H, class E, class A>
							 | 
						|
								void swap(HashtableInterface_SparseHashSet<K,H,E,A>& a,
							 | 
						|
								          HashtableInterface_SparseHashSet<K,H,E,A>& b) 
							 | 
						|
								{
							 | 
						|
								    swap(a.ht_, b.ht_);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class Value, class Key, class HashFcn, class ExtractKey,
							 | 
						|
								          class SetKey, class EqualKey, class Alloc>
							 | 
						|
								class HashtableInterface_SparseHashtable
							 | 
						|
								    : public BaseHashtableInterface< sparse_hashtable<Value, Key, HashFcn,
							 | 
						|
								                                                      ExtractKey, SetKey,
							 | 
						|
								                                                      EqualKey, Alloc> > 
							 | 
						|
								{
							 | 
						|
								private:
							 | 
						|
								    typedef sparse_hashtable<Value, Key, HashFcn, ExtractKey, SetKey,
							 | 
						|
								                             EqualKey, Alloc> ht;
							 | 
						|
								    typedef BaseHashtableInterface<ht> p;  // parent
							 | 
						|
								
							 | 
						|
								public:
							 | 
						|
								    explicit HashtableInterface_SparseHashtable(
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(expected_max_items, hf, eql,
							 | 
						|
								                                     ExtractKey(), SetKey(), alloc) { }
							 | 
						|
								
							 | 
						|
								    template <class InputIterator>
							 | 
						|
								    HashtableInterface_SparseHashtable(
							 | 
						|
								        InputIterator f, InputIterator l,
							 | 
						|
								        typename p::size_type expected_max_items = 0,
							 | 
						|
								        const typename p::hasher& hf = typename p::hasher(),
							 | 
						|
								        const typename p::key_equal& eql = typename p::key_equal(),
							 | 
						|
								        const typename p::allocator_type& alloc = typename p::allocator_type())
							 | 
						|
								        : BaseHashtableInterface<ht>(expected_max_items, hf, eql,
							 | 
						|
								                                     ExtractKey(), SetKey(), alloc) {
							 | 
						|
								        this->insert(f, l);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    float max_load_factor() const {
							 | 
						|
								        float shrink, grow;
							 | 
						|
								        this->ht_.get_resizing_parameters(&shrink, &grow);
							 | 
						|
								        return grow;
							 | 
						|
								    }
							 | 
						|
								    void max_load_factor(float new_grow) {
							 | 
						|
								        float shrink, grow;
							 | 
						|
								        this->ht_.get_resizing_parameters(&shrink, &grow);
							 | 
						|
								        this->ht_.set_resizing_parameters(shrink, new_grow);
							 | 
						|
								    }
							 | 
						|
								    float min_load_factor() const {
							 | 
						|
								        float shrink, grow;
							 | 
						|
								        this->ht_.get_resizing_parameters(&shrink, &grow);
							 | 
						|
								        return shrink;
							 | 
						|
								    }
							 | 
						|
								    void min_load_factor(float new_shrink) {
							 | 
						|
								        float shrink, grow;
							 | 
						|
								        this->ht_.get_resizing_parameters(&shrink, &grow);
							 | 
						|
								        this->ht_.set_resizing_parameters(new_shrink, grow);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    bool bracket_equal(const typename p::key_type&, const AssignValue&) {
							 | 
						|
								        return false;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template<typename AssignValue>
							 | 
						|
								    void bracket_assign(const typename p::key_type&, const AssignValue&) {
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    typename p::key_type get_key(const typename p::value_type& value) const {
							 | 
						|
								        return extract_key(value);
							 | 
						|
								    }
							 | 
						|
								    typename p::value_type get_data(const typename p::value_type& value) const {
							 | 
						|
								        return value;
							 | 
						|
								    }
							 | 
						|
								    typename p::value_type default_data() const {
							 | 
						|
								        return typename p::value_type();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    bool supports_clear_no_resize() const { return false; }
							 | 
						|
								    bool supports_empty_key() const { return false; }
							 | 
						|
								    bool supports_deleted_key() const { return false; }
							 | 
						|
								    bool supports_brackets() const { return false; }
							 | 
						|
								    bool supports_readwrite() const { return true; }
							 | 
						|
								    bool supports_num_table_copies() const { return true; }
							 | 
						|
								    bool supports_serialization() const { return true; }
							 | 
						|
								
							 | 
						|
								    void set_empty_key(const typename p::key_type&) { }
							 | 
						|
								    void clear_empty_key() { }
							 | 
						|
								    typename p::key_type empty_key() const { return typename p::key_type(); }
							 | 
						|
								
							 | 
						|
								    // These tr1 names aren't defined for sparse_hashtable.
							 | 
						|
								    typename p::hasher hash_function() { return this->hash_funct(); }
							 | 
						|
								    void rehash(typename p::size_type hint) { this->resize(hint); }
							 | 
						|
								
							 | 
						|
								    // TODO(csilvers): also support/test destructive_begin()/destructive_end()?
							 | 
						|
								
							 | 
						|
								    typedef typename ht::NopointerSerializer NopointerSerializer;
							 | 
						|
								
							 | 
						|
								protected:
							 | 
						|
								    template <class V2, class K2, class HF2, class EK2, class SK2, class Eq2,
							 | 
						|
								              class A2>
							 | 
						|
								    friend void swap(
							 | 
						|
								        HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& a,
							 | 
						|
								        HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& b);
							 | 
						|
								
							 | 
						|
								    typename p::key_type it_to_key(const typename p::iterator& it) const {
							 | 
						|
								        return extract_key(*it);
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_iterator& it) const {
							 | 
						|
								        return extract_key(*it);
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::local_iterator& it) const {
							 | 
						|
								        return extract_key(*it);
							 | 
						|
								    }
							 | 
						|
								    typename p::key_type it_to_key(const typename p::const_local_iterator& it)
							 | 
						|
								        const {
							 | 
						|
								        return extract_key(*it);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								private:
							 | 
						|
								    ExtractKey extract_key;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <class V, class K, class HF, class EK, class SK, class Eq, class A>
							 | 
						|
								void swap(HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& a,
							 | 
						|
								          HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& b) {
							 | 
						|
								    swap(a.ht_, b.ht_);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void EXPECT_TRUE(bool cond)
							 | 
						|
								{
							 | 
						|
								    if (!cond)
							 | 
						|
								    {
							 | 
						|
								        ::fputs("Test failed:\n", stderr);
							 | 
						|
								        ::exit(1);
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								namespace spp_
							 | 
						|
								{
							 | 
						|
								
							 | 
						|
								namespace testing 
							 | 
						|
								{
							 | 
						|
								
							 | 
						|
								#define EXPECT_FALSE(a)  EXPECT_TRUE(!(a))
							 | 
						|
								#define EXPECT_EQ(a, b)  EXPECT_TRUE((a) == (b))
							 | 
						|
								#define EXPECT_NE(a, b)  EXPECT_TRUE((a) != (b))
							 | 
						|
								#define EXPECT_LT(a, b)  EXPECT_TRUE((a) < (b))
							 | 
						|
								#define EXPECT_GT(a, b)  EXPECT_TRUE((a) > (b))
							 | 
						|
								#define EXPECT_LE(a, b)  EXPECT_TRUE((a) <= (b))
							 | 
						|
								#define EXPECT_GE(a, b)  EXPECT_TRUE((a) >= (b))
							 | 
						|
								
							 | 
						|
								#define EXPECT_DEATH(cmd, expected_error_string)                            \
							 | 
						|
								  try {                                                                     \
							 | 
						|
								      cmd;                                                                  \
							 | 
						|
								      EXPECT_FALSE("did not see expected error: " #expected_error_string);  \
							 | 
						|
								  } catch (const std::length_error&) {                                      \
							 | 
						|
								      /* Good, the cmd failed. */                                           \
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								#define TEST(suitename, testname)                                       \
							 | 
						|
								  class TEST_##suitename##_##testname {                                 \
							 | 
						|
								   public:                                                              \
							 | 
						|
								    TEST_##suitename##_##testname() {                                   \
							 | 
						|
								      ::fputs("Running " #suitename "." #testname "\n", stderr);        \
							 | 
						|
								      Run();                                                            \
							 | 
						|
								    }                                                                   \
							 | 
						|
								    void Run();                                                         \
							 | 
						|
								  };                                                                    \
							 | 
						|
								  static TEST_##suitename##_##testname                                  \
							 | 
						|
								      test_instance_##suitename##_##testname;                           \
							 | 
						|
								  void TEST_##suitename##_##testname::Run()
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename C1, typename C2, typename C3> 
							 | 
						|
								struct TypeList3 
							 | 
						|
								{
							 | 
						|
								  typedef C1 type1;
							 | 
						|
								  typedef C2 type2;
							 | 
						|
								  typedef C3 type3;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// I need to list 9 types here, for code below to compile, though
							 | 
						|
								// only the first 3 are ever used.
							 | 
						|
								#define TYPED_TEST_CASE_3(classname, typelist)  \
							 | 
						|
								  typedef typelist::type1 classname##_type1;    \
							 | 
						|
								  typedef typelist::type2 classname##_type2;    \
							 | 
						|
								  typedef typelist::type3 classname##_type3;    \
							 | 
						|
								  SPP_ATTRIBUTE_UNUSED static const int classname##_numtypes = 3;    \
							 | 
						|
								  typedef typelist::type1 classname##_type4;    \
							 | 
						|
								  typedef typelist::type1 classname##_type5;    \
							 | 
						|
								  typedef typelist::type1 classname##_type6;    \
							 | 
						|
								  typedef typelist::type1 classname##_type7;   \
							 | 
						|
								  typedef typelist::type1 classname##_type8;   \
							 | 
						|
								  typedef typelist::type1 classname##_type9
							 | 
						|
								
							 | 
						|
								template<typename C1, typename C2, typename C3, typename C4, typename C5,
							 | 
						|
								         typename C6, typename C7, typename C8, typename C9> 
							 | 
						|
								struct TypeList9 
							 | 
						|
								{
							 | 
						|
								    typedef C1 type1;
							 | 
						|
								    typedef C2 type2;
							 | 
						|
								    typedef C3 type3;
							 | 
						|
								    typedef C4 type4;
							 | 
						|
								    typedef C5 type5;
							 | 
						|
								    typedef C6 type6;
							 | 
						|
								    typedef C7 type7;
							 | 
						|
								    typedef C8 type8;
							 | 
						|
								    typedef C9 type9;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								#define TYPED_TEST_CASE_9(classname, typelist)  \
							 | 
						|
								  typedef typelist::type1 classname##_type1;    \
							 | 
						|
								  typedef typelist::type2 classname##_type2;    \
							 | 
						|
								  typedef typelist::type3 classname##_type3;    \
							 | 
						|
								  typedef typelist::type4 classname##_type4;    \
							 | 
						|
								  typedef typelist::type5 classname##_type5;    \
							 | 
						|
								  typedef typelist::type6 classname##_type6;    \
							 | 
						|
								  typedef typelist::type7 classname##_type7;    \
							 | 
						|
								  typedef typelist::type8 classname##_type8;    \
							 | 
						|
								  typedef typelist::type9 classname##_type9;    \
							 | 
						|
								  static const int classname##_numtypes = 9
							 | 
						|
								
							 | 
						|
								#define TYPED_TEST(superclass, testname)                                \
							 | 
						|
								  template<typename TypeParam>                                          \
							 | 
						|
								  class TEST_onetype_##superclass##_##testname :                        \
							 | 
						|
								      public superclass<TypeParam> {                                    \
							 | 
						|
								   public:                                                              \
							 | 
						|
								    TEST_onetype_##superclass##_##testname() {                          \
							 | 
						|
								      Run();                                                            \
							 | 
						|
								    }                                                                   \
							 | 
						|
								   private:                                                             \
							 | 
						|
								    void Run();                                                         \
							 | 
						|
								  };                                                                    \
							 | 
						|
								  class TEST_typed_##superclass##_##testname {                          \
							 | 
						|
								   public:                                                              \
							 | 
						|
								    explicit TEST_typed_##superclass##_##testname() {                   \
							 | 
						|
								      if (superclass##_numtypes >= 1) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".1\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type1> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 2) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".2\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type2> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 3) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".3\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type3> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 4) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".4\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type4> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 5) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".5\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type5> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 6) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".6\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type6> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 7) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".7\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type7> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 8) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".8\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type8> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								      if (superclass##_numtypes >= 9) {                                 \
							 | 
						|
								        ::fputs("Running " #superclass "." #testname ".9\n", stderr);   \
							 | 
						|
								        TEST_onetype_##superclass##_##testname<superclass##_type9> t;   \
							 | 
						|
								      }                                                                 \
							 | 
						|
								    }                                                                   \
							 | 
						|
								  };                                                                    \
							 | 
						|
								  static TEST_typed_##superclass##_##testname                           \
							 | 
						|
								      test_instance_typed_##superclass##_##testname;                    \
							 | 
						|
								  template<class TypeParam>                                             \
							 | 
						|
								  void TEST_onetype_##superclass##_##testname<TypeParam>::Run()
							 | 
						|
								
							 | 
						|
								// This is a dummy class just to make converting from internal-google
							 | 
						|
								// to opensourcing easier.
							 | 
						|
								class Test { };
							 | 
						|
								
							 | 
						|
								} // namespace testing
							 | 
						|
								
							 | 
						|
								} // namespace spp_
							 | 
						|
								
							 | 
						|
								namespace testing = SPP_NAMESPACE::testing;
							 | 
						|
								
							 | 
						|
								using std::cout;
							 | 
						|
								using std::pair;
							 | 
						|
								using std::set;
							 | 
						|
								using std::string;
							 | 
						|
								using std::vector;
							 | 
						|
								
							 | 
						|
								typedef unsigned char uint8;
							 | 
						|
								
							 | 
						|
								#ifdef _MSC_VER
							 | 
						|
								// Below, we purposefully test having a very small allocator size.
							 | 
						|
								// This causes some "type conversion too small" errors when using this
							 | 
						|
								// allocator with sparsetable buckets.  We're testing to make sure we
							 | 
						|
								// handle that situation ok, so we don't need the compiler warnings.
							 | 
						|
								#pragma warning(disable:4244)
							 | 
						|
								#define ATTRIBUTE_UNUSED
							 | 
						|
								#else
							 | 
						|
								#define ATTRIBUTE_UNUSED __attribute__((unused))
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								namespace {
							 | 
						|
								
							 | 
						|
								#ifndef _MSC_VER   // windows defines its own version
							 | 
						|
								# ifdef __MINGW32__ // mingw has trouble writing to /tmp
							 | 
						|
								static string TmpFile(const char* basename) {
							 | 
						|
								    return string("./#") + basename;
							 | 
						|
								}
							 | 
						|
								# else
							 | 
						|
								static string TmpFile(const char* basename) {
							 | 
						|
								    string kTmpdir = "/tmp";
							 | 
						|
								    return kTmpdir + "/" + basename;
							 | 
						|
								}
							 | 
						|
								# endif
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								// Used as a value in some of the hashtable tests.  It's just some
							 | 
						|
								// arbitrary user-defined type with non-trivial memory management.
							 | 
						|
								// ---------------------------------------------------------------
							 | 
						|
								struct ValueType 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    ValueType() : s_(kDefault) { }
							 | 
						|
								    ValueType(const char* init_s) : s_(kDefault) { set_s(init_s); }
							 | 
						|
								    ~ValueType() { set_s(NULL); }
							 | 
						|
								    ValueType(const ValueType& that) : s_(kDefault) { operator=(that); }
							 | 
						|
								    void operator=(const ValueType& that) { set_s(that.s_); }
							 | 
						|
								    bool operator==(const ValueType& that) const {
							 | 
						|
								        return strcmp(this->s(), that.s()) == 0;
							 | 
						|
								    }
							 | 
						|
								    void set_s(const char* new_s) {
							 | 
						|
								        if (s_ != kDefault)
							 | 
						|
								            free(const_cast<char*>(s_));
							 | 
						|
								        s_ = (new_s == NULL ? kDefault : reinterpret_cast<char*>(_strdup(new_s)));
							 | 
						|
								    }
							 | 
						|
								    const char* s() const { return s_; }
							 | 
						|
								private:
							 | 
						|
								    const char* s_;
							 | 
						|
								    static const char* const kDefault;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								const char* const ValueType::kDefault = "hi";
							 | 
						|
								
							 | 
						|
								// This is used by the low-level sparse/dense_hashtable classes,
							 | 
						|
								// which support the most general relationship between keys and
							 | 
						|
								// values: the key is derived from the value through some arbitrary
							 | 
						|
								// function.  (For classes like sparse_hash_map, the 'value' is a
							 | 
						|
								// key/data pair, and the function to derive the key is
							 | 
						|
								// FirstElementOfPair.)  KeyToValue is the inverse of this function,
							 | 
						|
								// so GetKey(KeyToValue(key)) == key.  To keep the tests a bit
							 | 
						|
								// simpler, we've chosen to make the key and value actually be the
							 | 
						|
								// same type, which is why we need only one template argument for the
							 | 
						|
								// types, rather than two (one for the key and one for the value).
							 | 
						|
								template<class KeyAndValueT, class KeyToValue>
							 | 
						|
								struct SetKey 
							 | 
						|
								{
							 | 
						|
								    void operator()(KeyAndValueT* value, const KeyAndValueT& new_key) const 
							 | 
						|
								    {
							 | 
						|
								        *value = KeyToValue()(new_key);
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// A hash function that keeps track of how often it's called.  We use
							 | 
						|
								// a simple djb-hash so we don't depend on how STL hashes.  We use
							 | 
						|
								// this same method to do the key-comparison, so we can keep track
							 | 
						|
								// of comparison-counts too.
							 | 
						|
								struct Hasher 
							 | 
						|
								{
							 | 
						|
								    explicit Hasher(int i=0) : id_(i), num_hashes_(0), num_compares_(0) { }
							 | 
						|
								    int id() const { return id_; }
							 | 
						|
								    int num_hashes() const { return num_hashes_; }
							 | 
						|
								    int num_compares() const { return num_compares_; }
							 | 
						|
								
							 | 
						|
								    size_t operator()(int a) const {
							 | 
						|
								        num_hashes_++;
							 | 
						|
								        return static_cast<size_t>(a);
							 | 
						|
								    }
							 | 
						|
								    size_t operator()(const char* a) const {
							 | 
						|
								        num_hashes_++;
							 | 
						|
								        size_t hash = 0;
							 | 
						|
								        for (size_t i = 0; a[i]; i++ )
							 | 
						|
								            hash = 33 * hash + a[i];
							 | 
						|
								        return hash;
							 | 
						|
								    }
							 | 
						|
								    size_t operator()(const string& a) const {
							 | 
						|
								        num_hashes_++;
							 | 
						|
								        size_t hash = 0;
							 | 
						|
								        for (size_t i = 0; i < a.length(); i++ )
							 | 
						|
								            hash = 33 * hash + a[i];
							 | 
						|
								        return hash;
							 | 
						|
								    }
							 | 
						|
								    size_t operator()(const int* a) const {
							 | 
						|
								        num_hashes_++;
							 | 
						|
								        return static_cast<size_t>(reinterpret_cast<uintptr_t>(a));
							 | 
						|
								    }
							 | 
						|
								    bool operator()(int a, int b) const {
							 | 
						|
								        num_compares_++;
							 | 
						|
								        return a == b;
							 | 
						|
								    }
							 | 
						|
								    bool operator()(const string& a, const string& b) const {
							 | 
						|
								        num_compares_++;
							 | 
						|
								        return a == b;
							 | 
						|
								    }
							 | 
						|
								    bool operator()(const char* a, const char* b) const {
							 | 
						|
								        num_compares_++;
							 | 
						|
								        // The 'a == b' test is necessary, in case a and b are both NULL.
							 | 
						|
								        return (a == b || (a && b && strcmp(a, b) == 0));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								private:
							 | 
						|
								    mutable int id_;
							 | 
						|
								    mutable int num_hashes_;
							 | 
						|
								    mutable int num_compares_;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// Allocator that allows controlling its size in various ways, to test
							 | 
						|
								// allocator overflow.  Because we use this allocator in a vector, we
							 | 
						|
								// need to define != and swap for gcc.
							 | 
						|
								// ------------------------------------------------------------------
							 | 
						|
								template<typename T, 
							 | 
						|
								         typename SizeT = size_t, 
							 | 
						|
								         SizeT MAX_SIZE = static_cast<SizeT>(~0)>
							 | 
						|
								struct Alloc 
							 | 
						|
								{
							 | 
						|
								    typedef T value_type;
							 | 
						|
								    typedef SizeT size_type;
							 | 
						|
								    typedef ptrdiff_t difference_type;
							 | 
						|
								    typedef T* pointer;
							 | 
						|
								    typedef const T* const_pointer;
							 | 
						|
								    typedef T& reference;
							 | 
						|
								    typedef const T& const_reference;
							 | 
						|
								
							 | 
						|
								    explicit Alloc(int i=0, int* count=NULL) : id_(i), count_(count) {}
							 | 
						|
								    ~Alloc() {}
							 | 
						|
								    pointer address(reference r) const  { return &r; }
							 | 
						|
								    const_pointer address(const_reference r) const  { return &r; }
							 | 
						|
								    pointer allocate(size_type n, const_pointer = 0) {
							 | 
						|
								        if (count_)  ++(*count_);
							 | 
						|
								        return static_cast<pointer>(malloc(n * sizeof(value_type)));
							 | 
						|
								    }
							 | 
						|
								    void deallocate(pointer p, size_type) {
							 | 
						|
								        free(p);
							 | 
						|
								    }
							 | 
						|
								    pointer reallocate(pointer p, size_type n) {
							 | 
						|
								        if (count_)  ++(*count_);
							 | 
						|
								        return static_cast<pointer>(realloc(p, n * sizeof(value_type)));
							 | 
						|
								    }
							 | 
						|
								    size_type max_size() const  {
							 | 
						|
								        return static_cast<size_type>(MAX_SIZE);
							 | 
						|
								    }
							 | 
						|
								    void construct(pointer p, const value_type& val) {
							 | 
						|
								        new(p) value_type(val);
							 | 
						|
								    }
							 | 
						|
								    void destroy(pointer p) { p->~value_type(); }
							 | 
						|
								
							 | 
						|
								    bool is_custom_alloc() const { return true; }
							 | 
						|
								
							 | 
						|
								    template <class U>
							 | 
						|
								    Alloc(const Alloc<U, SizeT, MAX_SIZE>& that)
							 | 
						|
								        : id_(that.id_), count_(that.count_) {
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    template <class U>
							 | 
						|
								    struct rebind {
							 | 
						|
								        typedef Alloc<U, SizeT, MAX_SIZE> other;
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    bool operator==(const Alloc& that) const {
							 | 
						|
								        return this->id_ == that.id_ && this->count_ == that.count_;
							 | 
						|
								    }
							 | 
						|
								    bool operator!=(const Alloc& that) const {
							 | 
						|
								        return !this->operator==(that);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    int id() const { return id_; }
							 | 
						|
								
							 | 
						|
								    // I have to make these public so the constructor used for rebinding
							 | 
						|
								    // can see them.  Normally, I'd just make them private and say:
							 | 
						|
								    //   template<typename U, typename U_SizeT, U_SizeT U_MAX_SIZE> friend struct Alloc;
							 | 
						|
								    // but MSVC 7.1 barfs on that.  So public it is.  But no peeking!
							 | 
						|
								public:
							 | 
						|
									int id_;
							 | 
						|
									int* count_;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Below are a few fun routines that convert a value into a key, used
							 | 
						|
								// for dense_hashtable and sparse_hashtable.  It's our responsibility
							 | 
						|
								// to make sure, when we insert values into these objects, that the
							 | 
						|
								// values match the keys we insert them under.  To allow us to use
							 | 
						|
								// these routines for SetKey as well, we require all these functions
							 | 
						|
								// be their own inverse: f(f(x)) == x.
							 | 
						|
								template<class Value>
							 | 
						|
								struct Negation {
							 | 
						|
								  typedef Value result_type;
							 | 
						|
								  Value operator()(Value& v) { return -v; }
							 | 
						|
								  const Value operator()(const Value& v) const { return -v; }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								struct Capital 
							 | 
						|
								{
							 | 
						|
								    typedef string result_type;
							 | 
						|
								    string operator()(string& s) {
							 | 
						|
								        return string(1, s[0] ^ 32) + s.substr(1);
							 | 
						|
								    }
							 | 
						|
								    const string operator()(const string& s) const {
							 | 
						|
								        return string(1, s[0] ^ 32) + s.substr(1);
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								struct Identity
							 | 
						|
								{   // lame, I know, but an important case to test.
							 | 
						|
								    typedef const char* result_type;
							 | 
						|
								    const char* operator()(const char* s) const {
							 | 
						|
								        return s;
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// This is just to avoid memory leaks -- it's a global pointer to
							 | 
						|
								// all the memory allocated by UniqueObjectHelper.  We'll use it
							 | 
						|
								// to semi-test sparsetable as well. :-)
							 | 
						|
								std::vector<char*> g_unique_charstar_objects(16, (char *)0);
							 | 
						|
								
							 | 
						|
								// This is an object-generator: pass in an index, and it will return a
							 | 
						|
								// unique object of type ItemType.  We provide specializations for the
							 | 
						|
								// types we actually support.
							 | 
						|
								template <typename ItemType> ItemType UniqueObjectHelper(int index);
							 | 
						|
								template<> int UniqueObjectHelper(int index) 
							 | 
						|
								{
							 | 
						|
								    return index;
							 | 
						|
								}
							 | 
						|
								template<> string UniqueObjectHelper(int index) 
							 | 
						|
								{
							 | 
						|
								    char buffer[64];
							 | 
						|
								    snprintf(buffer, sizeof(buffer), "%d", index);
							 | 
						|
								    return buffer;
							 | 
						|
								}
							 | 
						|
								template<> char* UniqueObjectHelper(int index) 
							 | 
						|
								{
							 | 
						|
								    // First grow the table if need be.
							 | 
						|
								    size_t table_size = g_unique_charstar_objects.size();
							 | 
						|
								    while (index >= static_cast<int>(table_size)) {
							 | 
						|
								        assert(table_size * 2 > table_size);  // avoid overflow problems
							 | 
						|
								        table_size *= 2;
							 | 
						|
								    }
							 | 
						|
								    if (table_size > g_unique_charstar_objects.size())
							 | 
						|
								        g_unique_charstar_objects.resize(table_size, (char *)0);
							 | 
						|
								    
							 | 
						|
								    if (!g_unique_charstar_objects[static_cast<size_t>(index)]) {
							 | 
						|
								        char buffer[64];
							 | 
						|
								        snprintf(buffer, sizeof(buffer), "%d", index);
							 | 
						|
								        g_unique_charstar_objects[static_cast<size_t>(index)] = _strdup(buffer);
							 | 
						|
								    }
							 | 
						|
								    return g_unique_charstar_objects[static_cast<size_t>(index)];
							 | 
						|
								}
							 | 
						|
								template<> const char* UniqueObjectHelper(int index) {
							 | 
						|
								    return UniqueObjectHelper<char*>(index);
							 | 
						|
								}
							 | 
						|
								template<> ValueType UniqueObjectHelper(int index) {
							 | 
						|
								    return ValueType(UniqueObjectHelper<string>(index).c_str());
							 | 
						|
								}
							 | 
						|
								template<> pair<const int, int> UniqueObjectHelper(int index) {
							 | 
						|
								    return pair<const int,int>(index, index + 1);
							 | 
						|
								}
							 | 
						|
								template<> pair<const string, string> UniqueObjectHelper(int index) 
							 | 
						|
								{
							 | 
						|
								    return pair<const string,string>(
							 | 
						|
								        UniqueObjectHelper<string>(index), UniqueObjectHelper<string>(index + 1));
							 | 
						|
								}
							 | 
						|
								template<> pair<const char* const,ValueType> UniqueObjectHelper(int index) 
							 | 
						|
								{
							 | 
						|
								    return pair<const char* const,ValueType>(
							 | 
						|
								        UniqueObjectHelper<char*>(index), UniqueObjectHelper<ValueType>(index+1));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								class ValueSerializer 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    bool operator()(FILE* fp, const int& value) {
							 | 
						|
								        return fwrite(&value, sizeof(value), 1, fp) == 1;
							 | 
						|
								    }
							 | 
						|
								    bool operator()(FILE* fp, int* value) {
							 | 
						|
								        return fread(value, sizeof(*value), 1, fp) == 1;
							 | 
						|
								    }
							 | 
						|
								    bool operator()(FILE* fp, const string& value) {
							 | 
						|
								        const size_t size = value.size();
							 | 
						|
								        return (*this)(fp, (int)size) && fwrite(value.c_str(), size, 1, fp) == 1;
							 | 
						|
								    }
							 | 
						|
								    bool operator()(FILE* fp, string* value) {
							 | 
						|
								        int size;
							 | 
						|
								        if (!(*this)(fp, &size)) return false;
							 | 
						|
								        char* buf = new char[(size_t)size];
							 | 
						|
								        if (fread(buf, (size_t)size, 1, fp) != 1) {
							 | 
						|
								            delete[] buf;
							 | 
						|
								            return false;
							 | 
						|
								        }
							 | 
						|
								        new (value) string(buf, (size_t)size);
							 | 
						|
								        delete[] buf;
							 | 
						|
								        return true;
							 | 
						|
								    }
							 | 
						|
								    template <typename OUTPUT>
							 | 
						|
								    bool operator()(OUTPUT* fp, const ValueType& v) {
							 | 
						|
								        return (*this)(fp, string(v.s()));
							 | 
						|
								    }
							 | 
						|
								    template <typename INPUT>
							 | 
						|
								    bool operator()(INPUT* fp, ValueType* v) {
							 | 
						|
								        string data;
							 | 
						|
								        if (!(*this)(fp, &data)) return false;
							 | 
						|
								        new(v) ValueType(data.c_str());
							 | 
						|
								        return true;
							 | 
						|
								    }
							 | 
						|
								    template <typename OUTPUT>
							 | 
						|
								    bool operator()(OUTPUT* fp, const char* const& value) {
							 | 
						|
								        // Just store the index.
							 | 
						|
								        return (*this)(fp, atoi(value));
							 | 
						|
								    }
							 | 
						|
								    template <typename INPUT>
							 | 
						|
								    bool operator()(INPUT* fp, const char** value) {
							 | 
						|
								        // Look up via index.
							 | 
						|
								        int index;
							 | 
						|
								        if (!(*this)(fp, &index)) return false;
							 | 
						|
								        *value = UniqueObjectHelper<char*>(index);
							 | 
						|
								        return true;
							 | 
						|
								    }
							 | 
						|
								    template <typename OUTPUT, typename First, typename Second>
							 | 
						|
								    bool operator()(OUTPUT* fp, std::pair<const First, Second>* value) {
							 | 
						|
								        return (*this)(fp, const_cast<First*>(&value->first))
							 | 
						|
								            && (*this)(fp, &value->second);
							 | 
						|
								    }
							 | 
						|
								    template <typename INPUT, typename First, typename Second>
							 | 
						|
								    bool operator()(INPUT* fp, const std::pair<const First, Second>& value) {
							 | 
						|
								        return (*this)(fp, value.first) && (*this)(fp, value.second);
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template <typename HashtableType>
							 | 
						|
								class HashtableTest : public ::testing::Test 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    HashtableTest() : ht_() { }
							 | 
						|
								    // Give syntactically-prettier access to UniqueObjectHelper.
							 | 
						|
								    typename HashtableType::value_type UniqueObject(int index) {
							 | 
						|
								        return UniqueObjectHelper<typename HashtableType::value_type>(index);
							 | 
						|
								    }
							 | 
						|
								    typename HashtableType::key_type UniqueKey(int index) {
							 | 
						|
								        return this->ht_.get_key(this->UniqueObject(index));
							 | 
						|
								    }
							 | 
						|
								protected:
							 | 
						|
								    HashtableType ht_;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// These are used to specify the empty key and deleted key in some
							 | 
						|
								// contexts.  They can't be in the unnamed namespace, or static,
							 | 
						|
								// because the template code requires external linkage.
							 | 
						|
								extern const string kEmptyString("--empty string--");
							 | 
						|
								extern const string kDeletedString("--deleted string--");
							 | 
						|
								extern const int kEmptyInt = 0;
							 | 
						|
								extern const int kDeletedInt = -1234676543;  // an unlikely-to-pick int
							 | 
						|
								extern const char* const kEmptyCharStar = "--empty char*--";
							 | 
						|
								extern const char* const kDeletedCharStar = "--deleted char*--";
							 | 
						|
								
							 | 
						|
								namespace {
							 | 
						|
								
							 | 
						|
								#define INT_HASHTABLES                                                  \
							 | 
						|
								  HashtableInterface_SparseHashMap<int, int, Hasher, Hasher,            \
							 | 
						|
								                                   Alloc<std::pair<const int, int> > >,  \
							 | 
						|
								  HashtableInterface_SparseHashSet<int, Hasher, Hasher,                 \
							 | 
						|
								                                   Alloc<int> >,                        \
							 | 
						|
								  /* This is a table where the key associated with a value is -value */ \
							 | 
						|
								  HashtableInterface_SparseHashtable<int, int, Hasher, Negation<int>,   \
							 | 
						|
								                                     SetKey<int, Negation<int> >,       \
							 | 
						|
								                                     Hasher, Alloc<int> >
							 | 
						|
								
							 | 
						|
								#define STRING_HASHTABLES                                               \
							 | 
						|
								  HashtableInterface_SparseHashMap<string, string, Hasher, Hasher,      \
							 | 
						|
								                                   Alloc<std::pair<const string, string> > >,                     \
							 | 
						|
								  HashtableInterface_SparseHashSet<string, Hasher, Hasher,              \
							 | 
						|
								                                   Alloc<string> >,                     \
							 | 
						|
								  /* This is a table where the key associated with a value is Cap(value) */ \
							 | 
						|
								  HashtableInterface_SparseHashtable<string, string, Hasher, Capital,   \
							 | 
						|
								                                     SetKey<string, Capital>,           \
							 | 
						|
								                                     Hasher, Alloc<string> >
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// I'd like to use ValueType keys for SparseHashtable<> and
							 | 
						|
								// DenseHashtable<> but I can't due to memory-management woes (nobody
							 | 
						|
								// really owns the char* involved).  So instead I do something simpler.
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								#define CHARSTAR_HASHTABLES                                             \
							 | 
						|
								  HashtableInterface_SparseHashMap<const char*, ValueType,              \
							 | 
						|
								                                   Hasher, Hasher, Alloc<std::pair<const char* const, ValueType> > >, \
							 | 
						|
								  HashtableInterface_SparseHashSet<const char*, Hasher, Hasher,         \
							 | 
						|
								                                   Alloc<const char*> >,                \
							 | 
						|
								  HashtableInterface_SparseHashtable<const char*, const char*,          \
							 | 
						|
								                                     Hasher, Identity,                  \
							 | 
						|
								                                     SetKey<const char*, Identity>,     \
							 | 
						|
								                                     Hasher, Alloc<const char*> >
							 | 
						|
								
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								// This is the list of types we run each test against.
							 | 
						|
								// We need to define the same class 4 times due to limitations in the
							 | 
						|
								// testing framework.  Basically, we associate each class below with
							 | 
						|
								// the set of types we want to run tests on it with.
							 | 
						|
								// ---------------------------------------------------------------------
							 | 
						|
								template <typename HashtableType> class HashtableIntTest
							 | 
						|
								    : public HashtableTest<HashtableType> { };
							 | 
						|
								
							 | 
						|
								template <typename HashtableType> class HashtableStringTest
							 | 
						|
								    : public HashtableTest<HashtableType> { };
							 | 
						|
								
							 | 
						|
								template <typename HashtableType> class HashtableCharStarTest
							 | 
						|
								    : public HashtableTest<HashtableType> { };
							 | 
						|
								
							 | 
						|
								template <typename HashtableType> class HashtableAllTest
							 | 
						|
								    : public HashtableTest<HashtableType> { };
							 | 
						|
								
							 | 
						|
								typedef testing::TypeList3<INT_HASHTABLES> IntHashtables;
							 | 
						|
								typedef testing::TypeList3<STRING_HASHTABLES> StringHashtables;
							 | 
						|
								typedef testing::TypeList3<CHARSTAR_HASHTABLES> CharStarHashtables;
							 | 
						|
								typedef testing::TypeList9<INT_HASHTABLES, STRING_HASHTABLES,
							 | 
						|
								                           CHARSTAR_HASHTABLES> AllHashtables;
							 | 
						|
								
							 | 
						|
								TYPED_TEST_CASE_3(HashtableIntTest, IntHashtables);
							 | 
						|
								TYPED_TEST_CASE_3(HashtableStringTest, StringHashtables);
							 | 
						|
								TYPED_TEST_CASE_3(HashtableCharStarTest, CharStarHashtables);
							 | 
						|
								TYPED_TEST_CASE_9(HashtableAllTest, AllHashtables);
							 | 
						|
								
							 | 
						|
								// ------------------------------------------------------------------------
							 | 
						|
								// First, some testing of the underlying infrastructure.
							 | 
						|
								
							 | 
						|
								#if 0
							 | 
						|
								
							 | 
						|
								TEST(HashtableCommonTest, HashMunging) 
							 | 
						|
								{
							 | 
						|
								    const Hasher hasher;
							 | 
						|
								
							 | 
						|
								    // We don't munge the hash value on non-pointer template types.
							 | 
						|
								    {
							 | 
						|
								        const sparsehash_internal::sh_hashtable_settings<int, Hasher, size_t, 1>
							 | 
						|
								            settings(hasher, 0.0, 0.0);
							 | 
						|
								        const int v = 1000;
							 | 
						|
								        EXPECT_EQ(hasher(v), settings.hash(v));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    {
							 | 
						|
								        // We do munge the hash value on pointer template types.
							 | 
						|
								        const sparsehash_internal::sh_hashtable_settings<int*, Hasher, size_t, 1>
							 | 
						|
								            settings(hasher, 0.0, 0.0);
							 | 
						|
								        int* v = NULL;
							 | 
						|
								        v += 0x10000;    // get a non-trivial pointer value
							 | 
						|
								        EXPECT_NE(hasher(v), settings.hash(v));
							 | 
						|
								    }
							 | 
						|
								    {
							 | 
						|
								        const sparsehash_internal::sh_hashtable_settings<const int*, Hasher,
							 | 
						|
								                                                         size_t, 1>
							 | 
						|
								            settings(hasher, 0.0, 0.0);
							 | 
						|
								        const int* v = NULL;
							 | 
						|
								        v += 0x10000;    // get a non-trivial pointer value
							 | 
						|
								        EXPECT_NE(hasher(v), settings.hash(v));
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								// ------------------------------------------------------------------------
							 | 
						|
								// If the first arg to TYPED_TEST is HashtableIntTest, it will run
							 | 
						|
								// this test on all the hashtable types, with key=int and value=int.
							 | 
						|
								// Likewise, HashtableStringTest will have string key/values, and
							 | 
						|
								// HashtableCharStarTest will have char* keys and -- just to mix it up
							 | 
						|
								// a little -- ValueType values.  HashtableAllTest will run all three
							 | 
						|
								// key/value types on all 6 hashtables types, for 9 test-runs total
							 | 
						|
								// per test.
							 | 
						|
								//
							 | 
						|
								// In addition, TYPED_TEST makes available the magic keyword
							 | 
						|
								// TypeParam, which is the type being used for the current test.
							 | 
						|
								
							 | 
						|
								// This first set of tests just tests the public API, going through
							 | 
						|
								// the public typedefs and methods in turn.  It goes approximately
							 | 
						|
								// in the definition-order in sparse_hash_map.h.
							 | 
						|
								// ------------------------------------------------------------------------
							 | 
						|
								TYPED_TEST(HashtableIntTest, Typedefs) 
							 | 
						|
								{
							 | 
						|
								    // Make sure all the standard STL-y typedefs are defined.  The exact
							 | 
						|
								    // key/value types don't matter here, so we only bother testing on
							 | 
						|
								    // the int tables.  This is just a compile-time "test"; nothing here
							 | 
						|
								    // can fail at runtime.
							 | 
						|
								    this->ht_.set_deleted_key(-2);  // just so deleted_key succeeds
							 | 
						|
								    typename TypeParam::key_type kt;
							 | 
						|
								    typename TypeParam::value_type vt;
							 | 
						|
								    typename TypeParam::hasher h;
							 | 
						|
								    typename TypeParam::key_equal ke;
							 | 
						|
								    typename TypeParam::allocator_type at;
							 | 
						|
								
							 | 
						|
								    typename TypeParam::size_type st;
							 | 
						|
								    typename TypeParam::difference_type dt;
							 | 
						|
								    typename TypeParam::pointer p;
							 | 
						|
								    typename TypeParam::const_pointer cp;
							 | 
						|
								    // I can't declare variables of reference-type, since I have nothing
							 | 
						|
								    // to point them to, so I just make sure that these types exist.
							 | 
						|
								    ATTRIBUTE_UNUSED typedef typename TypeParam::reference r;
							 | 
						|
								    ATTRIBUTE_UNUSED typedef typename TypeParam::const_reference cf;
							 | 
						|
								
							 | 
						|
								    typename TypeParam::iterator i;
							 | 
						|
								    typename TypeParam::const_iterator ci;
							 | 
						|
								    typename TypeParam::local_iterator li;
							 | 
						|
								    typename TypeParam::const_local_iterator cli;
							 | 
						|
								
							 | 
						|
								    // Now make sure the variables are used, so the compiler doesn't
							 | 
						|
								    // complain.  Where possible, I "use" the variable by calling the
							 | 
						|
								    // method that's supposed to return the unique instance of the
							 | 
						|
								    // relevant type (eg. get_allocator()).  Otherwise, I try to call a
							 | 
						|
								    // different, arbitrary function that returns the type.  Sometimes
							 | 
						|
								    // the type isn't used at all, and there's no good way to use the
							 | 
						|
								    // variable.
							 | 
						|
								    (void)vt;   // value_type may not be copyable.  Easiest not to try.
							 | 
						|
								    h = this->ht_.hash_funct();
							 | 
						|
								    ke = this->ht_.key_eq();
							 | 
						|
								    at = this->ht_.get_allocator();
							 | 
						|
								    st = this->ht_.size();
							 | 
						|
								    (void)dt;
							 | 
						|
								    (void)p;
							 | 
						|
								    (void)cp;
							 | 
						|
								    (void)kt;
							 | 
						|
								    (void)st;
							 | 
						|
								    i = this->ht_.begin();
							 | 
						|
								    ci = this->ht_.begin();
							 | 
						|
								    li = this->ht_.begin(0);
							 | 
						|
								    cli = this->ht_.begin(0);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, NormalIterators) 
							 | 
						|
								{
							 | 
						|
								    EXPECT_TRUE(this->ht_.begin() == this->ht_.end());
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    {
							 | 
						|
								        typename TypeParam::iterator it = this->ht_.begin();
							 | 
						|
								        EXPECT_TRUE(it != this->ht_.end());
							 | 
						|
								        ++it;
							 | 
						|
								        EXPECT_TRUE(it == this->ht_.end());
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
							 | 
						|
								
							 | 
						|
								template <class T> struct MyHash;
							 | 
						|
								typedef std::pair<std::string, std::string> StringPair;
							 | 
						|
								
							 | 
						|
								template<> struct MyHash<StringPair>
							 | 
						|
								{
							 | 
						|
								    size_t operator()(StringPair const& p) const 
							 | 
						|
								    {
							 | 
						|
								        return std::hash<string>()(p.first);
							 | 
						|
								    }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								class MovableOnlyType 
							 | 
						|
								{
							 | 
						|
								    std::string   _str;
							 | 
						|
								    std::uint64_t _int;
							 | 
						|
								
							 | 
						|
								public:
							 | 
						|
								    // Make object movable and non-copyable
							 | 
						|
								    MovableOnlyType(MovableOnlyType &&) = default;
							 | 
						|
								    MovableOnlyType(const MovableOnlyType &) = delete;
							 | 
						|
								    MovableOnlyType& operator=(MovableOnlyType &&) = default;
							 | 
						|
								    MovableOnlyType& operator=(const MovableOnlyType &) = delete;
							 | 
						|
								    MovableOnlyType() : _str("whatever"), _int(2) {}
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								void movable_emplace_test(std::size_t iterations, int container_size) 
							 | 
						|
								{
							 | 
						|
								    for (std::size_t i=0;i<iterations;++i) 
							 | 
						|
								    {
							 | 
						|
								        spp::sparse_hash_map<std::string,MovableOnlyType> m;
							 | 
						|
								        m.reserve(static_cast<size_t>(container_size));
							 | 
						|
								        char buff[20];
							 | 
						|
								        for (int j=0; j<container_size; ++j) 
							 | 
						|
								        {
							 | 
						|
								            sprintf(buff, "%d", j);
							 | 
						|
								            m.emplace(buff, MovableOnlyType());
							 | 
						|
								        }
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, Emplace) 
							 | 
						|
								{
							 | 
						|
								    {
							 | 
						|
								        sparse_hash_map<std::string, std::string> mymap;
							 | 
						|
								
							 | 
						|
								        mymap.emplace ("NCC-1701", "J.T. Kirk");
							 | 
						|
								        mymap.emplace ("NCC-1701-D", "J.L. Picard");
							 | 
						|
								        mymap.emplace ("NCC-74656", "K. Janeway");
							 | 
						|
								        EXPECT_TRUE(mymap["NCC-74656"] == std::string("K. Janeway"));
							 | 
						|
								
							 | 
						|
								        sparse_hash_set<StringPair, MyHash<StringPair> > myset;
							 | 
						|
								        myset.emplace ("NCC-1701", "J.T. Kirk");
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    movable_emplace_test(10, 50);
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
							 | 
						|
								TEST(HashtableTest, IncompleteTypes) 
							 | 
						|
								{
							 | 
						|
								    int i;
							 | 
						|
								    sparse_hash_map<int *, int> ht2;
							 | 
						|
								    ht2[&i] = 3;
							 | 
						|
								
							 | 
						|
								    struct Bogus;
							 | 
						|
								    sparse_hash_map<Bogus *, int> ht3;
							 | 
						|
								    ht3[(Bogus *)0] = 8;
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
							 | 
						|
								TEST(HashtableTest, ReferenceWrapper) 
							 | 
						|
								{
							 | 
						|
								    sparse_hash_map<int, std::reference_wrapper<int>> x;
							 | 
						|
								    int a = 5;
							 | 
						|
								    x.insert(std::make_pair(3, std::ref(a)));
							 | 
						|
								    EXPECT_EQ(x.at(3), 5);
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
							 | 
						|
								class CNonCopyable
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    CNonCopyable(CNonCopyable const &) = delete;
							 | 
						|
								    const CNonCopyable& operator=(CNonCopyable const &) = delete;
							 | 
						|
								    CNonCopyable() = default;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								struct Probe : CNonCopyable
							 | 
						|
								{
							 | 
						|
								    Probe() {}
							 | 
						|
								    Probe(Probe &&) {}
							 | 
						|
								    void operator=(Probe &&)	{}
							 | 
						|
								
							 | 
						|
								private:
							 | 
						|
								    Probe(const Probe &);
							 | 
						|
								    Probe& operator=(const Probe &);
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, NonCopyable) 
							 | 
						|
								{
							 | 
						|
								    typedef spp::sparse_hash_map<uint64_t, Probe> THashMap;
							 | 
						|
								    THashMap probes;
							 | 
						|
								    
							 | 
						|
								    probes.insert(THashMap::value_type(27, Probe()));
							 | 
						|
								    EXPECT_EQ(probes.begin()->first, 27);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, ModifyViaIterator) 
							 | 
						|
								{
							 | 
						|
								    // This only works for hash-maps, since only they have non-const values.
							 | 
						|
								    {
							 | 
						|
								        sparse_hash_map<int, int> ht;
							 | 
						|
								        ht[1] = 2;
							 | 
						|
								        sparse_hash_map<int, int>::iterator it = ht.find(1);
							 | 
						|
								        EXPECT_TRUE(it != ht.end());
							 | 
						|
								        EXPECT_EQ(1, it->first);
							 | 
						|
								        EXPECT_EQ(2, it->second);
							 | 
						|
								        it->second = 5;
							 | 
						|
								        it = ht.find(1);
							 | 
						|
								        EXPECT_TRUE(it != ht.end());
							 | 
						|
								        EXPECT_EQ(5, it->second);
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ConstIterators)
							 | 
						|
								{
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    typename TypeParam::const_iterator it = this->ht_.begin();
							 | 
						|
								    EXPECT_TRUE(it != (typename TypeParam::const_iterator)this->ht_.end());
							 | 
						|
								    ++it;
							 | 
						|
								    EXPECT_TRUE(it == (typename TypeParam::const_iterator)this->ht_.end());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, LocalIterators) 
							 | 
						|
								{
							 | 
						|
								    // Now, tr1 begin/end (the local iterator that takes a bucket-number).
							 | 
						|
								    // ht::bucket() returns the bucket that this key would be inserted in.
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    const typename TypeParam::size_type bucknum =
							 | 
						|
								        this->ht_.bucket(this->UniqueKey(1));
							 | 
						|
								    typename TypeParam::local_iterator b = this->ht_.begin(bucknum);
							 | 
						|
								    typename TypeParam::local_iterator e = this->ht_.end(bucknum);
							 | 
						|
								    EXPECT_TRUE(b != e);
							 | 
						|
								    b++;
							 | 
						|
								    EXPECT_TRUE(b == e);
							 | 
						|
								
							 | 
						|
								    // Check an empty bucket.  We can just xor the bottom bit and be sure
							 | 
						|
								    // of getting a legal bucket, since #buckets is always a power of 2.
							 | 
						|
								    EXPECT_TRUE(this->ht_.begin(bucknum ^ 1) == this->ht_.end(bucknum ^ 1));
							 | 
						|
								    // Another test, this time making sure we're using the right types.
							 | 
						|
								    typename TypeParam::local_iterator b2 = this->ht_.begin(bucknum ^ 1);
							 | 
						|
								    typename TypeParam::local_iterator e2 = this->ht_.end(bucknum ^ 1);
							 | 
						|
								    EXPECT_TRUE(b2 == e2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ConstLocalIterators) 
							 | 
						|
								{
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    const typename TypeParam::size_type bucknum =
							 | 
						|
								        this->ht_.bucket(this->UniqueKey(1));
							 | 
						|
								    typename TypeParam::const_local_iterator b = this->ht_.begin(bucknum);
							 | 
						|
								    typename TypeParam::const_local_iterator e = this->ht_.end(bucknum);
							 | 
						|
								    EXPECT_TRUE(b != e);
							 | 
						|
								    b++;
							 | 
						|
								    EXPECT_TRUE(b == e);
							 | 
						|
								    typename TypeParam::const_local_iterator b2 = this->ht_.begin(bucknum ^ 1);
							 | 
						|
								    typename TypeParam::const_local_iterator e2 = this->ht_.end(bucknum ^ 1);
							 | 
						|
								    EXPECT_TRUE(b2 == e2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Iterating) 
							 | 
						|
								{
							 | 
						|
								    // Test a bit more iterating than just one ++.
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111111));
							 | 
						|
								    typename TypeParam::iterator it = this->ht_.begin();
							 | 
						|
								    for (int i = 1; i <= 9; i++) {   // start at 1 so i is never 0
							 | 
						|
								        // && here makes it easier to tell what loop iteration the test failed on.
							 | 
						|
								        EXPECT_TRUE(i && (it++ != this->ht_.end()));
							 | 
						|
								    }
							 | 
						|
								    EXPECT_TRUE(it == this->ht_.end());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableIntTest, Constructors) 
							 | 
						|
								{
							 | 
						|
								    // The key/value types don't matter here, so I just test on one set
							 | 
						|
								    // of tables, the ones with int keys, which can easily handle the
							 | 
						|
								    // placement-news we have to do below.
							 | 
						|
								    Hasher hasher(1);   // 1 is a unique id
							 | 
						|
								    int alloc_count = 0;
							 | 
						|
								    Alloc<typename TypeParam::value_type> alloc(2, &alloc_count);
							 | 
						|
								
							 | 
						|
								    TypeParam ht_noarg;
							 | 
						|
								    TypeParam ht_onearg(100);
							 | 
						|
								    TypeParam ht_twoarg(100, hasher);
							 | 
						|
								    TypeParam ht_threearg(100, hasher, hasher);  // hasher serves as key_equal too
							 | 
						|
								    TypeParam ht_fourarg(100, hasher, hasher, alloc);
							 | 
						|
								
							 | 
						|
								    // The allocator should have been called at most once, for the last ht.
							 | 
						|
								    EXPECT_GE(1, alloc_count);
							 | 
						|
								    int old_alloc_count = alloc_count;
							 | 
						|
								
							 | 
						|
								    const typename TypeParam::value_type input[] = {
							 | 
						|
								        this->UniqueObject(1),
							 | 
						|
								        this->UniqueObject(2),
							 | 
						|
								        this->UniqueObject(4),
							 | 
						|
								        this->UniqueObject(8)
							 | 
						|
								    };
							 | 
						|
								    const int num_inputs = sizeof(input) / sizeof(input[0]);
							 | 
						|
								    const typename TypeParam::value_type *begin = &input[0];
							 | 
						|
								    const typename TypeParam::value_type *end = begin + num_inputs;
							 | 
						|
								    TypeParam ht_iter_noarg(begin, end);
							 | 
						|
								    TypeParam ht_iter_onearg(begin, end, 100);
							 | 
						|
								    TypeParam ht_iter_twoarg(begin, end, 100, hasher);
							 | 
						|
								    TypeParam ht_iter_threearg(begin, end, 100, hasher, hasher);
							 | 
						|
								    TypeParam ht_iter_fourarg(begin, end, 100, hasher, hasher, alloc);
							 | 
						|
								    // Now the allocator should have been called more.
							 | 
						|
								    EXPECT_GT(alloc_count, old_alloc_count);
							 | 
						|
								    old_alloc_count = alloc_count;
							 | 
						|
								
							 | 
						|
								    // Let's do a lot more inserting and make sure the alloc-count goes up
							 | 
						|
								    for (int i = 2; i < 2000; i++)
							 | 
						|
								        ht_fourarg.insert(this->UniqueObject(i));
							 | 
						|
								    EXPECT_GT(alloc_count, old_alloc_count);
							 | 
						|
								
							 | 
						|
								    EXPECT_LT(ht_noarg.bucket_count(), 100u);
							 | 
						|
								    EXPECT_GE(ht_onearg.bucket_count(), 100u);
							 | 
						|
								    EXPECT_GE(ht_twoarg.bucket_count(), 100u);
							 | 
						|
								    EXPECT_GE(ht_threearg.bucket_count(), 100u);
							 | 
						|
								    EXPECT_GE(ht_fourarg.bucket_count(), 100u);
							 | 
						|
								    EXPECT_GE(ht_iter_onearg.bucket_count(), 100u);
							 | 
						|
								
							 | 
						|
								    // When we pass in a hasher -- it can serve both as the hash-function
							 | 
						|
								    // and the key-equal function -- its id should be 1.  Where we don't
							 | 
						|
								    // pass it in and use the default Hasher object, the id should be 0.
							 | 
						|
								    EXPECT_EQ(0, ht_noarg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_noarg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(0, ht_onearg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_onearg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(1, ht_twoarg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_twoarg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(1, ht_threearg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(1, ht_threearg.key_eq().id());
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(0, ht_iter_noarg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_iter_noarg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(0, ht_iter_onearg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_iter_onearg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(1, ht_iter_twoarg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, ht_iter_twoarg.key_eq().id());
							 | 
						|
								    EXPECT_EQ(1, ht_iter_threearg.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(1, ht_iter_threearg.key_eq().id());
							 | 
						|
								
							 | 
						|
								    // Likewise for the allocator
							 | 
						|
								    EXPECT_EQ(0, ht_threearg.get_allocator().id());
							 | 
						|
								    EXPECT_EQ(0, ht_iter_threearg.get_allocator().id());
							 | 
						|
								    EXPECT_EQ(2, ht_fourarg.get_allocator().id());
							 | 
						|
								    EXPECT_EQ(2, ht_iter_fourarg.get_allocator().id());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, OperatorEquals) 
							 | 
						|
								{
							 | 
						|
								    {
							 | 
						|
								        TypeParam ht1, ht2;
							 | 
						|
								        ht1.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								        ht2.set_deleted_key(this->UniqueKey(2));
							 | 
						|
								
							 | 
						|
								        ht1.insert(this->UniqueObject(10));
							 | 
						|
								        ht2.insert(this->UniqueObject(20));
							 | 
						|
								        EXPECT_FALSE(ht1 == ht2);
							 | 
						|
								        ht1 = ht2;
							 | 
						|
								        EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								    }
							 | 
						|
								    {
							 | 
						|
								        TypeParam ht1, ht2;
							 | 
						|
								        ht1.insert(this->UniqueObject(30));
							 | 
						|
								        ht1 = ht2;
							 | 
						|
								        EXPECT_EQ(0u, ht1.size());
							 | 
						|
								    }
							 | 
						|
								    {
							 | 
						|
								        TypeParam ht1, ht2;
							 | 
						|
								        ht1.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								        ht2.insert(this->UniqueObject(1));        // has same key as ht1.delkey
							 | 
						|
								        ht1 = ht2;     // should reset deleted-key to 'unset'
							 | 
						|
								        EXPECT_EQ(1u, ht1.size());
							 | 
						|
								        EXPECT_EQ(1u, ht1.count(this->UniqueKey(1)));
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Clear) 
							 | 
						|
								{
							 | 
						|
								    for (int i = 1; i < 200; i++) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    this->ht_.clear();
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								    // TODO(csilvers): do we want to enforce that the hashtable has or
							 | 
						|
								    // has not shrunk?  It does for dense_* but not sparse_*.
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ClearNoResize)
							 | 
						|
								{
							 | 
						|
								    if (!this->ht_.supports_clear_no_resize())
							 | 
						|
								        return;
							 | 
						|
								    typename TypeParam::size_type empty_bucket_count = this->ht_.bucket_count();
							 | 
						|
								    int last_element = 1;
							 | 
						|
								    while (this->ht_.bucket_count() == empty_bucket_count) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(last_element));
							 | 
						|
								        ++last_element;
							 | 
						|
								    }
							 | 
						|
								    typename TypeParam::size_type last_bucket_count = this->ht_.bucket_count();
							 | 
						|
								    this->ht_.clear_no_resize();
							 | 
						|
								    EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								
							 | 
						|
								    // When inserting the same number of elements again, no resize
							 | 
						|
								    // should be necessary.
							 | 
						|
								    for (int i = 1; i < last_element; ++i) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(last_element + i));
							 | 
						|
								        EXPECT_EQ(last_bucket_count, this->ht_.bucket_count());
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Swap) 
							 | 
						|
								{
							 | 
						|
								    // Let's make a second hashtable with its own hasher, key_equal, etc.
							 | 
						|
								    Hasher hasher(1);   // 1 is a unique id
							 | 
						|
								    TypeParam other_ht(200, hasher, hasher);
							 | 
						|
								
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    other_ht.set_deleted_key(this->UniqueKey(2));
							 | 
						|
								
							 | 
						|
								    for (int i = 3; i < 2000; i++) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    this->ht_.erase(this->UniqueKey(1000));
							 | 
						|
								    other_ht.insert(this->UniqueObject(2001));
							 | 
						|
								    typename TypeParam::size_type expected_buckets = other_ht.bucket_count();
							 | 
						|
								
							 | 
						|
								    this->ht_.swap(other_ht);
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(1, this->ht_.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(0, other_ht.hash_funct().id());
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(1, this->ht_.key_eq().id());
							 | 
						|
								    EXPECT_EQ(0, other_ht.key_eq().id());
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(expected_buckets, this->ht_.bucket_count());
							 | 
						|
								    EXPECT_GT(other_ht.bucket_count(), 200u);
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(1996u, other_ht.size());    // because we erased 1000
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(111)));
							 | 
						|
								    EXPECT_EQ(1u, other_ht.count(this->UniqueKey(111)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(2001)));
							 | 
						|
								    EXPECT_EQ(0u, other_ht.count(this->UniqueKey(2001)));
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1000)));
							 | 
						|
								    EXPECT_EQ(0u, other_ht.count(this->UniqueKey(1000)));
							 | 
						|
								
							 | 
						|
								    // We purposefully don't swap allocs -- they're not necessarily swappable.
							 | 
						|
								
							 | 
						|
								    // Now swap back, using the free-function swap
							 | 
						|
								    // NOTE: MSVC seems to have trouble with this free swap, not quite
							 | 
						|
								    // sure why.  I've given up trying to fix it though.
							 | 
						|
								#ifdef _MSC_VER
							 | 
						|
								    other_ht.swap(this->ht_);
							 | 
						|
								#else
							 | 
						|
								    std::swap(this->ht_, other_ht);
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(0, this->ht_.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(1, other_ht.hash_funct().id());
							 | 
						|
								    EXPECT_EQ(1996u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(1u, other_ht.size());
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(111)));
							 | 
						|
								    EXPECT_EQ(0u, other_ht.count(this->UniqueKey(111)));
							 | 
						|
								
							 | 
						|
								    // A user reported a crash with this code using swap to clear.
							 | 
						|
								    // We've since fixed the bug; this prevents a regression.
							 | 
						|
								    TypeParam swap_to_clear_ht;
							 | 
						|
								    swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    for (int i = 2; i < 10000; ++i) {
							 | 
						|
								        swap_to_clear_ht.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    TypeParam empty_ht;
							 | 
						|
								    empty_ht.swap(swap_to_clear_ht);
							 | 
						|
								    swap_to_clear_ht.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    for (int i = 2; i < 10000; ++i) {
							 | 
						|
								        swap_to_clear_ht.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Size) 
							 | 
						|
								{
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								    for (int i = 1; i < 1000; i++) {    // go through some resizes
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								        EXPECT_EQ(static_cast<typename TypeParam::size_type>(i), this->ht_.size());
							 | 
						|
								    }
							 | 
						|
								    this->ht_.clear();
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());     // deleted key doesn't count
							 | 
						|
								    for (int i = 2; i < 1000; i++) {    // go through some resizes
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								        this->ht_.erase(this->UniqueKey(i));
							 | 
						|
								        EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, MaxSizeAndMaxBucketCount) 
							 | 
						|
								{
							 | 
						|
								    // The max size depends on the allocator.  So we can't use the
							 | 
						|
								    // built-in allocator type; instead, we make our own types.
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int> > ht_default;
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char> > ht_char;
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char, 104> > ht_104;
							 | 
						|
								
							 | 
						|
								    EXPECT_GE(ht_default.max_size(), 256u);
							 | 
						|
								    EXPECT_EQ(255u, ht_char.max_size());
							 | 
						|
								    EXPECT_EQ(104u, ht_104.max_size());
							 | 
						|
								
							 | 
						|
								    // In our implementations, MaxBucketCount == MaxSize.
							 | 
						|
								    EXPECT_EQ(ht_default.max_size(), ht_default.max_bucket_count());
							 | 
						|
								    EXPECT_EQ(ht_char.max_size(), ht_char.max_bucket_count());
							 | 
						|
								    EXPECT_EQ(ht_104.max_size(), ht_104.max_bucket_count());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Empty) 
							 | 
						|
								{
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    EXPECT_FALSE(this->ht_.empty());
							 | 
						|
								
							 | 
						|
								    this->ht_.clear();
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								
							 | 
						|
								    TypeParam empty_ht;
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    this->ht_.swap(empty_ht);
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, BucketCount) 
							 | 
						|
								{
							 | 
						|
								    TypeParam ht(100);
							 | 
						|
								    // constructor arg is number of *items* to be inserted, not the
							 | 
						|
								    // number of buckets, so we expect more buckets.
							 | 
						|
								    EXPECT_GT(ht.bucket_count(), 100u);
							 | 
						|
								    for (int i = 1; i < 200; i++) {
							 | 
						|
								        ht.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    EXPECT_GT(ht.bucket_count(), 200u);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, BucketAndBucketSize) 
							 | 
						|
								{
							 | 
						|
								    const typename TypeParam::size_type expected_bucknum = this->ht_.bucket(
							 | 
						|
								        this->UniqueKey(1));
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum));
							 | 
						|
								
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    EXPECT_EQ(expected_bucknum, this->ht_.bucket(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.bucket_size(expected_bucknum));
							 | 
						|
								
							 | 
						|
								    // Check that a bucket we didn't insert into, has a 0 size.  Since
							 | 
						|
								    // we have an even number of buckets, bucknum^1 is guaranteed in range.
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum ^ 1));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, LoadFactor) 
							 | 
						|
								{
							 | 
						|
								    const typename TypeParam::size_type kSize = 16536;
							 | 
						|
								    // Check growing past various thresholds and then shrinking below
							 | 
						|
								    // them.
							 | 
						|
								    for (float grow_threshold = 0.2f;
							 | 
						|
								         grow_threshold <= 0.8f;
							 | 
						|
								         grow_threshold += 0.2f) 
							 | 
						|
								    {
							 | 
						|
								        TypeParam ht;
							 | 
						|
								        ht.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								        ht.max_load_factor(grow_threshold);
							 | 
						|
								        ht.min_load_factor(0.0);
							 | 
						|
								        EXPECT_EQ(grow_threshold, ht.max_load_factor());
							 | 
						|
								        EXPECT_EQ(0.0, ht.min_load_factor());
							 | 
						|
								
							 | 
						|
								        ht.resize(kSize);
							 | 
						|
								        size_t bucket_count = ht.bucket_count();
							 | 
						|
								        // Erase and insert an element to set consider_shrink = true,
							 | 
						|
								        // which should not cause a shrink because the threshold is 0.0.
							 | 
						|
								        ht.insert(this->UniqueObject(2));
							 | 
						|
								        ht.erase(this->UniqueKey(2));
							 | 
						|
								        for (int i = 2;; ++i) 
							 | 
						|
								        {
							 | 
						|
								            ht.insert(this->UniqueObject(i));
							 | 
						|
								            if (static_cast<float>(ht.size())/bucket_count < grow_threshold) {
							 | 
						|
								                EXPECT_EQ(bucket_count, ht.bucket_count());
							 | 
						|
								            } else {
							 | 
						|
								                EXPECT_GT(ht.bucket_count(), bucket_count);
							 | 
						|
								                break;
							 | 
						|
								            }
							 | 
						|
								        }
							 | 
						|
								        // Now set a shrink threshold 1% below the current size and remove
							 | 
						|
								        // items until the size falls below that.
							 | 
						|
								        const float shrink_threshold = static_cast<float>(ht.size()) /
							 | 
						|
								            ht.bucket_count() - 0.01f;
							 | 
						|
								
							 | 
						|
								        // This time around, check the old set_resizing_parameters interface.
							 | 
						|
								        ht.set_resizing_parameters(shrink_threshold, 1.0);
							 | 
						|
								        EXPECT_EQ(1.0, ht.max_load_factor());
							 | 
						|
								        EXPECT_EQ(shrink_threshold, ht.min_load_factor());
							 | 
						|
								
							 | 
						|
								        bucket_count = ht.bucket_count();
							 | 
						|
								        for (int i = 2;; ++i) 
							 | 
						|
								        {
							 | 
						|
								            ht.erase(this->UniqueKey(i));
							 | 
						|
								            // A resize is only triggered by an insert, so add and remove a
							 | 
						|
								            // value every iteration to trigger the shrink as soon as the
							 | 
						|
								            // threshold is passed.
							 | 
						|
								            ht.erase(this->UniqueKey(i+1));
							 | 
						|
								            ht.insert(this->UniqueObject(i+1));
							 | 
						|
								            if (static_cast<float>(ht.size())/bucket_count > shrink_threshold) {
							 | 
						|
								                EXPECT_EQ(bucket_count, ht.bucket_count());
							 | 
						|
								            } else {
							 | 
						|
								                EXPECT_LT(ht.bucket_count(), bucket_count);
							 | 
						|
								                break;
							 | 
						|
								            }
							 | 
						|
								        }
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ResizeAndRehash) 
							 | 
						|
								{
							 | 
						|
								    // resize() and rehash() are synonyms.  rehash() is the tr1 name.
							 | 
						|
								    TypeParam ht(10000);
							 | 
						|
								    ht.max_load_factor(0.8f);    // for consistency's sake
							 | 
						|
								
							 | 
						|
								    for (int i = 1; i < 100; ++i)
							 | 
						|
								        ht.insert(this->UniqueObject(i));
							 | 
						|
								    ht.resize(0);
							 | 
						|
								    // Now ht should be as small as possible.
							 | 
						|
								    EXPECT_LT(ht.bucket_count(), 300u);
							 | 
						|
								
							 | 
						|
								    ht.rehash(9000);    // use the 'rehash' version of the name.
							 | 
						|
								    // Bucket count should be next power of 2, after considering max_load_factor.
							 | 
						|
								    EXPECT_EQ(16384u, ht.bucket_count());
							 | 
						|
								    for (int i = 101; i < 200; ++i)
							 | 
						|
								        ht.insert(this->UniqueObject(i));
							 | 
						|
								    // Adding a few hundred buckets shouldn't have caused a resize yet.
							 | 
						|
								    EXPECT_EQ(ht.bucket_count(), 16384u);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, FindAndCountAndEqualRange) 
							 | 
						|
								{
							 | 
						|
								    pair<typename TypeParam::iterator, typename TypeParam::iterator> eq_pair;
							 | 
						|
								    pair<typename TypeParam::const_iterator,
							 | 
						|
								         typename TypeParam::const_iterator> const_eq_pair;
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) == this->ht_.end());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1)));
							 | 
						|
								    eq_pair = this->ht_.equal_range(this->UniqueKey(1));
							 | 
						|
								    EXPECT_TRUE(eq_pair.first == eq_pair.second);
							 | 
						|
								
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    EXPECT_FALSE(this->ht_.empty());
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111111));
							 | 
						|
								    EXPECT_EQ(9u, this->ht_.size());
							 | 
						|
								    typename TypeParam::const_iterator it = this->ht_.find(this->UniqueKey(1));
							 | 
						|
								    EXPECT_EQ(it.key(), this->UniqueKey(1));
							 | 
						|
								
							 | 
						|
								    // Allow testing the const version of the methods as well.
							 | 
						|
								    const TypeParam ht = this->ht_;
							 | 
						|
								
							 | 
						|
								    // Some successful lookups (via find, count, and equal_range).
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
							 | 
						|
								    eq_pair = this->ht_.equal_range(this->UniqueKey(1));
							 | 
						|
								    EXPECT_TRUE(eq_pair.first != eq_pair.second);
							 | 
						|
								    EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(1));
							 | 
						|
								    ++eq_pair.first;
							 | 
						|
								    EXPECT_TRUE(eq_pair.first == eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(ht.find(this->UniqueKey(1)) != ht.end());
							 | 
						|
								    EXPECT_EQ(1u, ht.count(this->UniqueKey(1)));
							 | 
						|
								    const_eq_pair = ht.equal_range(this->UniqueKey(1));
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
							 | 
						|
								    EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(1));
							 | 
						|
								    ++const_eq_pair.first;
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(11111)) != this->ht_.end());
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(11111)));
							 | 
						|
								    eq_pair = this->ht_.equal_range(this->UniqueKey(11111));
							 | 
						|
								    EXPECT_TRUE(eq_pair.first != eq_pair.second);
							 | 
						|
								    EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(11111));
							 | 
						|
								    ++eq_pair.first;
							 | 
						|
								    EXPECT_TRUE(eq_pair.first == eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(ht.find(this->UniqueKey(11111)) != ht.end());
							 | 
						|
								    EXPECT_EQ(1u, ht.count(this->UniqueKey(11111)));
							 | 
						|
								    const_eq_pair = ht.equal_range(this->UniqueKey(11111));
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second);
							 | 
						|
								    EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(11111));
							 | 
						|
								    ++const_eq_pair.first;
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
							 | 
						|
								
							 | 
						|
								    // Some unsuccessful lookups (via find, count, and equal_range).
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(11112)) == this->ht_.end());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11112)));
							 | 
						|
								    eq_pair = this->ht_.equal_range(this->UniqueKey(11112));
							 | 
						|
								    EXPECT_TRUE(eq_pair.first == eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(ht.find(this->UniqueKey(11112)) == ht.end());
							 | 
						|
								    EXPECT_EQ(0u, ht.count(this->UniqueKey(11112)));
							 | 
						|
								    const_eq_pair = ht.equal_range(this->UniqueKey(11112));
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(11110)) == this->ht_.end());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11110)));
							 | 
						|
								    eq_pair = this->ht_.equal_range(this->UniqueKey(11110));
							 | 
						|
								    EXPECT_TRUE(eq_pair.first == eq_pair.second);
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(ht.find(this->UniqueKey(11110)) == ht.end());
							 | 
						|
								    EXPECT_EQ(0u, ht.count(this->UniqueKey(11110)));
							 | 
						|
								    const_eq_pair = ht.equal_range(this->UniqueKey(11110));
							 | 
						|
								    EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, BracketInsert) 
							 | 
						|
								{
							 | 
						|
								    // tests operator[], for those types that support it.
							 | 
						|
								    if (!this->ht_.supports_brackets())
							 | 
						|
								        return;
							 | 
						|
								
							 | 
						|
								    // bracket_equal is equivalent to ht_[a] == b.  It should insert a if
							 | 
						|
								    // it doesn't already exist.
							 | 
						|
								    EXPECT_TRUE(this->ht_.bracket_equal(this->UniqueKey(1),
							 | 
						|
								                                        this->ht_.default_data()));
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
							 | 
						|
								
							 | 
						|
								    // bracket_assign is equivalent to ht_[a] = b.
							 | 
						|
								    this->ht_.bracket_assign(this->UniqueKey(2),
							 | 
						|
								                             this->ht_.get_data(this->UniqueObject(4)));
							 | 
						|
								    EXPECT_TRUE(this->ht_.find(this->UniqueKey(2)) != this->ht_.end());
							 | 
						|
								    EXPECT_TRUE(this->ht_.bracket_equal(
							 | 
						|
								                    this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(4))));
							 | 
						|
								
							 | 
						|
								    this->ht_.bracket_assign(
							 | 
						|
								        this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6)));
							 | 
						|
								    EXPECT_TRUE(this->ht_.bracket_equal(
							 | 
						|
								                    this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
							 | 
						|
								    // bracket_equal shouldn't have modified the value.
							 | 
						|
								    EXPECT_TRUE(this->ht_.bracket_equal(
							 | 
						|
								                    this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
							 | 
						|
								
							 | 
						|
								    // Verify that an operator[] that doesn't cause a resize, also
							 | 
						|
								    // doesn't require an extra rehash.
							 | 
						|
								    TypeParam ht(100);
							 | 
						|
								    EXPECT_EQ(0, ht.hash_funct().num_hashes());
							 | 
						|
								    ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
							 | 
						|
								    EXPECT_EQ(1, ht.hash_funct().num_hashes());
							 | 
						|
								
							 | 
						|
								    // And overwriting, likewise, should only cause one extra hash.
							 | 
						|
								    ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2)));
							 | 
						|
								    EXPECT_EQ(2, ht.hash_funct().num_hashes());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, InsertValue) 
							 | 
						|
								{
							 | 
						|
								    // First, try some straightforward insertions.
							 | 
						|
								    EXPECT_TRUE(this->ht_.empty());
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    EXPECT_FALSE(this->ht_.empty());
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(1111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(11111111));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(111111111));
							 | 
						|
								    EXPECT_EQ(9u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1111)));
							 | 
						|
								
							 | 
						|
								    // Check the return type.
							 | 
						|
								    pair<typename TypeParam::iterator, bool> insert_it;
							 | 
						|
								    insert_it = this->ht_.insert(this->UniqueObject(1));
							 | 
						|
								    EXPECT_EQ(false, insert_it.second);   // false: already present
							 | 
						|
								    EXPECT_TRUE(*insert_it.first == this->UniqueObject(1));
							 | 
						|
								
							 | 
						|
								    insert_it = this->ht_.insert(this->UniqueObject(2));
							 | 
						|
								    EXPECT_EQ(true, insert_it.second);   // true: not already present
							 | 
						|
								    EXPECT_TRUE(*insert_it.first == this->UniqueObject(2));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableIntTest, InsertRange) 
							 | 
						|
								{
							 | 
						|
								    // We just test the ints here, to make the placement-new easier.
							 | 
						|
								    TypeParam ht_source;
							 | 
						|
								    ht_source.insert(this->UniqueObject(10));
							 | 
						|
								    ht_source.insert(this->UniqueObject(100));
							 | 
						|
								    ht_source.insert(this->UniqueObject(1000));
							 | 
						|
								    ht_source.insert(this->UniqueObject(10000));
							 | 
						|
								    ht_source.insert(this->UniqueObject(100000));
							 | 
						|
								    ht_source.insert(this->UniqueObject(1000000));
							 | 
						|
								
							 | 
						|
								    const typename TypeParam::value_type input[] = {
							 | 
						|
								        // This is a copy of the first element in ht_source.
							 | 
						|
								        *ht_source.begin(),
							 | 
						|
								        this->UniqueObject(2),
							 | 
						|
								        this->UniqueObject(4),
							 | 
						|
								        this->UniqueObject(8)
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    set<typename TypeParam::value_type> set_input;
							 | 
						|
								    set_input.insert(this->UniqueObject(1111111));
							 | 
						|
								    set_input.insert(this->UniqueObject(111111));
							 | 
						|
								    set_input.insert(this->UniqueObject(11111));
							 | 
						|
								    set_input.insert(this->UniqueObject(1111));
							 | 
						|
								    set_input.insert(this->UniqueObject(111));
							 | 
						|
								    set_input.insert(this->UniqueObject(11));
							 | 
						|
								
							 | 
						|
								    // Insert from ht_source, an iterator of the same type as us.
							 | 
						|
								    typename TypeParam::const_iterator begin = ht_source.begin();
							 | 
						|
								    typename TypeParam::const_iterator end = begin;
							 | 
						|
								    std::advance(end, 3);
							 | 
						|
								    this->ht_.insert(begin, end);   // insert 3 elements from ht_source
							 | 
						|
								    EXPECT_EQ(3u, this->ht_.size());
							 | 
						|
								    EXPECT_TRUE(*this->ht_.begin() == this->UniqueObject(10) ||
							 | 
						|
								                *this->ht_.begin() == this->UniqueObject(100) ||
							 | 
						|
								                *this->ht_.begin() == this->UniqueObject(1000) ||
							 | 
						|
								                *this->ht_.begin() == this->UniqueObject(10000) ||
							 | 
						|
								                *this->ht_.begin() == this->UniqueObject(100000) ||
							 | 
						|
								                *this->ht_.begin() == this->UniqueObject(1000000));
							 | 
						|
								
							 | 
						|
								    // And insert from set_input, a separate, non-random-access iterator.
							 | 
						|
								    typename set<typename TypeParam::value_type>::const_iterator set_begin;
							 | 
						|
								    typename set<typename TypeParam::value_type>::const_iterator set_end;
							 | 
						|
								    set_begin = set_input.begin();
							 | 
						|
								    set_end = set_begin;
							 | 
						|
								    std::advance(set_end, 3);
							 | 
						|
								    this->ht_.insert(set_begin, set_end);
							 | 
						|
								    EXPECT_EQ(6u, this->ht_.size());
							 | 
						|
								
							 | 
						|
								    // Insert from input as well, a separate, random-access iterator.
							 | 
						|
								    // The first element of input overlaps with an existing element
							 | 
						|
								    // of ht_, so this should only up the size by 2.
							 | 
						|
								    this->ht_.insert(&input[0], &input[3]);
							 | 
						|
								    EXPECT_EQ(8u, this->ht_.size());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, InsertValueToMap) 
							 | 
						|
								{
							 | 
						|
								    // For the maps in particular, ensure that inserting doesn't change
							 | 
						|
								    // the value.
							 | 
						|
								    sparse_hash_map<int, int> shm;
							 | 
						|
								    pair<sparse_hash_map<int,int>::iterator, bool> shm_it;
							 | 
						|
								    shm[1] = 2;   // test a different method of inserting
							 | 
						|
								    shm_it = shm.insert(pair<int, int>(1, 3));
							 | 
						|
								    EXPECT_EQ(false, shm_it.second);
							 | 
						|
								    EXPECT_EQ(1, shm_it.first->first);
							 | 
						|
								    EXPECT_EQ(2, shm_it.first->second);
							 | 
						|
								    shm_it.first->second = 20;
							 | 
						|
								    EXPECT_EQ(20, shm[1]);
							 | 
						|
								
							 | 
						|
								    shm_it = shm.insert(pair<int, int>(2, 4));
							 | 
						|
								    EXPECT_EQ(true, shm_it.second);
							 | 
						|
								    EXPECT_EQ(2, shm_it.first->first);
							 | 
						|
								    EXPECT_EQ(4, shm_it.first->second);
							 | 
						|
								    EXPECT_EQ(4, shm[2]);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableStringTest, EmptyKey)
							 | 
						|
								{
							 | 
						|
								    // Only run the string tests, to make it easier to know what the
							 | 
						|
								    // empty key should be.
							 | 
						|
								    if (!this->ht_.supports_empty_key())
							 | 
						|
								        return;
							 | 
						|
								    EXPECT_EQ(kEmptyString, this->ht_.empty_key());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Erase) 
							 | 
						|
								{
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(10));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(20));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(20)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(19)));
							 | 
						|
								    EXPECT_EQ(1u, this->ht_.size());
							 | 
						|
								
							 | 
						|
								    typename TypeParam::iterator it = this->ht_.find(this->UniqueKey(10));
							 | 
						|
								    EXPECT_TRUE(it != this->ht_.end());
							 | 
						|
								    this->ht_.erase(it);
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								
							 | 
						|
								    for (int i = 10; i < 100; i++)
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								    EXPECT_EQ(90u, this->ht_.size());
							 | 
						|
								    this->ht_.erase(this->ht_.begin(), this->ht_.end());
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, EraseDoesNotResize) 
							 | 
						|
								{
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    for (int i = 10; i < 2000; i++) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    const typename TypeParam::size_type old_count = this->ht_.bucket_count();
							 | 
						|
								    for (int i = 10; i < 1000; i++) {                 // erase half one at a time
							 | 
						|
								        EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(i)));
							 | 
						|
								    }
							 | 
						|
								    this->ht_.erase(this->ht_.begin(), this->ht_.end());  // and the rest at once
							 | 
						|
								    EXPECT_EQ(0u, this->ht_.size());
							 | 
						|
								    EXPECT_EQ(old_count, this->ht_.bucket_count());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Equals)
							 | 
						|
								{
							 | 
						|
								    // The real test here is whether two hashtables are equal if they
							 | 
						|
								    // have the same items but in a different order.
							 | 
						|
								    TypeParam ht1;
							 | 
						|
								    TypeParam ht2;
							 | 
						|
								
							 | 
						|
								    EXPECT_TRUE(ht1 == ht1);
							 | 
						|
								    EXPECT_FALSE(ht1 != ht1);
							 | 
						|
								    EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								    EXPECT_FALSE(ht1 != ht2);
							 | 
						|
								    ht1.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    // Only the contents affect equality, not things like deleted-key.
							 | 
						|
								    EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								    EXPECT_FALSE(ht1 != ht2);
							 | 
						|
								    ht1.resize(2000);
							 | 
						|
								    EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								
							 | 
						|
								    // The choice of allocator/etc doesn't matter either.
							 | 
						|
								    Hasher hasher(1);
							 | 
						|
								    Alloc<typename TypeParam::value_type> alloc(2, NULL);
							 | 
						|
								    TypeParam ht3(5, hasher, hasher, alloc);
							 | 
						|
								    EXPECT_TRUE(ht1 == ht3);
							 | 
						|
								    EXPECT_FALSE(ht1 != ht3);
							 | 
						|
								
							 | 
						|
								    ht1.insert(this->UniqueObject(2));
							 | 
						|
								    EXPECT_TRUE(ht1 != ht2);
							 | 
						|
								    EXPECT_FALSE(ht1 == ht2);   // this should hold as well!
							 | 
						|
								
							 | 
						|
								    ht2.insert(this->UniqueObject(2));
							 | 
						|
								    EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								
							 | 
						|
								    for (int i = 3; i <= 2000; i++) {
							 | 
						|
								        ht1.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    for (int i = 2000; i >= 3; i--) {
							 | 
						|
								        ht2.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    EXPECT_TRUE(ht1 == ht2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, IntIO) 
							 | 
						|
								{
							 | 
						|
								    // Since the set case is just a special (easier) case than the map case, I
							 | 
						|
								    // just test on sparse_hash_map.  This handles the easy case where we can
							 | 
						|
								    // use the standard reader and writer.
							 | 
						|
								    sparse_hash_map<int, int> ht_out;
							 | 
						|
								    ht_out.set_deleted_key(0);
							 | 
						|
								    for (int i = 1; i < 1000; i++) {
							 | 
						|
								        ht_out[i] = i * i;
							 | 
						|
								    }
							 | 
						|
								    ht_out.erase(563);   // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase(22);
							 | 
						|
								
							 | 
						|
								    string file(TmpFile("intio"));
							 | 
						|
								    FILE* fp = fopen(file.c_str(), "wb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_out.write_metadata(fp));
							 | 
						|
								        EXPECT_TRUE(ht_out.write_nopointer_data(fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    sparse_hash_map<int, int> ht_in;
							 | 
						|
								    fp = fopen(file.c_str(), "rb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_in.read_metadata(fp));
							 | 
						|
								        EXPECT_TRUE(ht_in.read_nopointer_data(fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(1, ht_in[1]);
							 | 
						|
								    EXPECT_EQ(998001, ht_in[999]);
							 | 
						|
								    EXPECT_EQ(100, ht_in[10]);
							 | 
						|
								    EXPECT_EQ(441, ht_in[21]);
							 | 
						|
								    EXPECT_EQ(0, ht_in[22]);    // should not have been saved
							 | 
						|
								    EXPECT_EQ(0, ht_in[563]);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, StringIO) 
							 | 
						|
								{
							 | 
						|
								    // Since the set case is just a special (easier) case than the map case,
							 | 
						|
								    // I just test on sparse_hash_map.  This handles the difficult case where
							 | 
						|
								    // we have to write our own custom reader/writer for the data.
							 | 
						|
								    typedef sparse_hash_map<string, string, Hasher, Hasher> SP;
							 | 
						|
								    SP ht_out;
							 | 
						|
								    ht_out.set_deleted_key(string(""));
							 | 
						|
								
							 | 
						|
								    for (int i = 32; i < 128; i++) {
							 | 
						|
								        // This maps 'a' to 32 a's, 'b' to 33 b's, etc.
							 | 
						|
								        ht_out[string(1, (char)i)] = string((size_t)i, (char)i);
							 | 
						|
								    }
							 | 
						|
								    ht_out.erase("c");   // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase("y");
							 | 
						|
								
							 | 
						|
								    string file(TmpFile("stringio"));
							 | 
						|
								    FILE* fp = fopen(file.c_str(), "wb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_out.write_metadata(fp));
							 | 
						|
								
							 | 
						|
								        for (SP::const_iterator it = ht_out.cbegin(); it != ht_out.cend(); ++it) 
							 | 
						|
								        {
							 | 
						|
								            const string::size_type first_size = it->first.length();
							 | 
						|
								            fwrite(&first_size, sizeof(first_size), 1, fp); // ignore endianness issues
							 | 
						|
								            fwrite(it->first.c_str(), first_size, 1, fp);
							 | 
						|
								
							 | 
						|
								            const string::size_type second_size = it->second.length();
							 | 
						|
								            fwrite(&second_size, sizeof(second_size), 1, fp);
							 | 
						|
								            fwrite(it->second.c_str(), second_size, 1, fp);
							 | 
						|
								        }
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    sparse_hash_map<string, string, Hasher, Hasher> ht_in;
							 | 
						|
								    fp = fopen(file.c_str(), "rb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_in.read_metadata(fp));
							 | 
						|
								        for (sparse_hash_map<string, string, Hasher, Hasher>::iterator
							 | 
						|
								                 it = ht_in.begin(); it != ht_in.end(); ++it) {
							 | 
						|
								            string::size_type first_size;
							 | 
						|
								            EXPECT_EQ(1u, fread(&first_size, sizeof(first_size), 1, fp));
							 | 
						|
								            char* first = new char[first_size];
							 | 
						|
								            EXPECT_EQ(1u, fread(first, first_size, 1, fp));
							 | 
						|
								
							 | 
						|
								            string::size_type second_size;
							 | 
						|
								            EXPECT_EQ(1u, fread(&second_size, sizeof(second_size), 1, fp));
							 | 
						|
								            char* second = new char[second_size];
							 | 
						|
								            EXPECT_EQ(1u, fread(second, second_size, 1, fp));
							 | 
						|
								
							 | 
						|
								            // it points to garbage, so we have to use placement-new to initialize.
							 | 
						|
								            // We also have to use const-cast since it->first is const.
							 | 
						|
								            new(const_cast<string*>(&it->first)) string(first, first_size);
							 | 
						|
								            new(&it->second) string(second, second_size);
							 | 
						|
								            delete[] first;
							 | 
						|
								            delete[] second;
							 | 
						|
								        }
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								    EXPECT_EQ(string("                                "), ht_in[" "]);
							 | 
						|
								    EXPECT_EQ(string("+++++++++++++++++++++++++++++++++++++++++++"), ht_in["+"]);
							 | 
						|
								    EXPECT_EQ(string(""), ht_in["c"]);    // should not have been saved
							 | 
						|
								    EXPECT_EQ(string(""), ht_in["y"]);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, Serialization) 
							 | 
						|
								{
							 | 
						|
								    if (!this->ht_.supports_serialization()) return;
							 | 
						|
								    TypeParam ht_out;
							 | 
						|
								    ht_out.set_deleted_key(this->UniqueKey(2000));
							 | 
						|
								    for (int i = 1; i < 100; i++) {
							 | 
						|
								        ht_out.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase(this->UniqueKey(56));
							 | 
						|
								    ht_out.erase(this->UniqueKey(22));
							 | 
						|
								
							 | 
						|
								    string file(TmpFile("serialization"));
							 | 
						|
								    FILE* fp = fopen(file.c_str(), "wb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_out.serialize(ValueSerializer(), fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    TypeParam ht_in;
							 | 
						|
								    fp = fopen(file.c_str(), "rb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_in.unserialize(ValueSerializer(), fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
							 | 
						|
								    // should not have been saved
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableIntTest, NopointerSerialization) 
							 | 
						|
								{
							 | 
						|
								    if (!this->ht_.supports_serialization()) return;
							 | 
						|
								    TypeParam ht_out;
							 | 
						|
								    ht_out.set_deleted_key(this->UniqueKey(2000));
							 | 
						|
								    for (int i = 1; i < 100; i++) {
							 | 
						|
								        ht_out.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase(this->UniqueKey(56));
							 | 
						|
								    ht_out.erase(this->UniqueKey(22));
							 | 
						|
								
							 | 
						|
								    string file(TmpFile("nopointer_serialization"));
							 | 
						|
								    FILE* fp = fopen(file.c_str(), "wb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    TypeParam ht_in;
							 | 
						|
								    fp = fopen(file.c_str(), "rb");
							 | 
						|
								    if (fp)
							 | 
						|
								    {
							 | 
						|
								        EXPECT_TRUE(fp != NULL);
							 | 
						|
								        EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), fp));
							 | 
						|
								        fclose(fp);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
							 | 
						|
								    // should not have been saved
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// We don't support serializing to a string by default, but you can do
							 | 
						|
								// it by writing your own custom input/output class.
							 | 
						|
								class StringIO {
							 | 
						|
								 public:
							 | 
						|
								  explicit StringIO(string* s) : s_(s) {}
							 | 
						|
								  size_t Write(const void* buf, size_t len) {
							 | 
						|
								    s_->append(reinterpret_cast<const char*>(buf), len);
							 | 
						|
								    return len;
							 | 
						|
								  }
							 | 
						|
								  size_t Read(void* buf, size_t len) {
							 | 
						|
								    if (s_->length() < len)
							 | 
						|
								      len = s_->length();
							 | 
						|
								    memcpy(reinterpret_cast<char*>(buf), s_->data(), len);
							 | 
						|
								    s_->erase(0, len);
							 | 
						|
								    return len;
							 | 
						|
								  }
							 | 
						|
								 private:
							 | 
						|
								  StringIO& operator=(const StringIO&);
							 | 
						|
								  string* const s_;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableIntTest, SerializingToString) 
							 | 
						|
								{
							 | 
						|
								    if (!this->ht_.supports_serialization()) return;
							 | 
						|
								    TypeParam ht_out;
							 | 
						|
								    ht_out.set_deleted_key(this->UniqueKey(2000));
							 | 
						|
								    for (int i = 1; i < 100; i++) {
							 | 
						|
								        ht_out.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase(this->UniqueKey(56));
							 | 
						|
								    ht_out.erase(this->UniqueKey(22));
							 | 
						|
								
							 | 
						|
								    string stringbuf;
							 | 
						|
								    StringIO stringio(&stringbuf);
							 | 
						|
								    EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
							 | 
						|
								                                 &stringio));
							 | 
						|
								
							 | 
						|
								    TypeParam ht_in;
							 | 
						|
								    EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
							 | 
						|
								                                  &stringio));
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
							 | 
						|
								    // should not have been saved
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// An easier way to do the above would be to use the existing stream methods.
							 | 
						|
								TYPED_TEST(HashtableIntTest, SerializingToStringStream) 
							 | 
						|
								{
							 | 
						|
								    if (!this->ht_.supports_serialization()) return;
							 | 
						|
								    TypeParam ht_out;
							 | 
						|
								    ht_out.set_deleted_key(this->UniqueKey(2000));
							 | 
						|
								    for (int i = 1; i < 100; i++) {
							 | 
						|
								        ht_out.insert(this->UniqueObject(i));
							 | 
						|
								    }
							 | 
						|
								    // just to test having some erased keys when we write.
							 | 
						|
								    ht_out.erase(this->UniqueKey(56));
							 | 
						|
								    ht_out.erase(this->UniqueKey(22));
							 | 
						|
								
							 | 
						|
								    std::stringstream string_buffer;
							 | 
						|
								    EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
							 | 
						|
								                                 &string_buffer));
							 | 
						|
								
							 | 
						|
								    TypeParam ht_in;
							 | 
						|
								    EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(),
							 | 
						|
								                                  &string_buffer));
							 | 
						|
								
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(100)));
							 | 
						|
								    EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21)));
							 | 
						|
								    // should not have been saved
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(22)));
							 | 
						|
								    EXPECT_FALSE(ht_in.count(this->UniqueKey(56)));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Verify that the metadata serialization is endianness and word size
							 | 
						|
								// agnostic.
							 | 
						|
								TYPED_TEST(HashtableAllTest, MetadataSerializationAndEndianness) 
							 | 
						|
								{
							 | 
						|
								    TypeParam ht_out;
							 | 
						|
								    string kExpectedDense("\x13W\x86""B\0\0\0\0\0\0\0 \0\0\0\0\0\0\0\0\0\0\0\0", 
							 | 
						|
								                          24);
							 | 
						|
								
							 | 
						|
								    // GP change - switched size from 20 to formula, because the sparsegroup bitmap is 4 or 8 bytes and not 6
							 | 
						|
								    string kExpectedSparse("$hu1\0\0\0 \0\0\0\0\0\0\0\0\0\0\0", 12 + sizeof(group_bm_type));
							 | 
						|
								
							 | 
						|
								    if (ht_out.supports_readwrite()) {
							 | 
						|
								        size_t num_bytes = 0;
							 | 
						|
								        string file(TmpFile("metadata_serialization"));
							 | 
						|
								        FILE* fp = fopen(file.c_str(), "wb");
							 | 
						|
								        if (fp)
							 | 
						|
								        {
							 | 
						|
								            EXPECT_TRUE(fp != NULL);
							 | 
						|
								
							 | 
						|
								            EXPECT_TRUE(ht_out.write_metadata(fp));
							 | 
						|
								            EXPECT_TRUE(ht_out.write_nopointer_data(fp));
							 | 
						|
								
							 | 
						|
								            num_bytes = (const size_t)ftell(fp);
							 | 
						|
								            fclose(fp);
							 | 
						|
								        }
							 | 
						|
								        
							 | 
						|
								        char contents[24] = {0};
							 | 
						|
								        fp = fopen(file.c_str(), "rb");
							 | 
						|
								        if (fp)
							 | 
						|
								        {
							 | 
						|
								            EXPECT_LE(num_bytes, static_cast<size_t>(24));
							 | 
						|
								            EXPECT_EQ(num_bytes, fread(contents, 1, num_bytes <= 24 ? num_bytes : 24, fp));
							 | 
						|
								            EXPECT_EQ(EOF, fgetc(fp));       // check we're *exactly* the right size
							 | 
						|
								            fclose(fp);
							 | 
						|
								        }
							 | 
						|
								        // TODO(csilvers): check type of ht_out instead of looking at the 1st byte.
							 | 
						|
								        if (contents[0] == kExpectedDense[0]) {
							 | 
						|
								            EXPECT_EQ(kExpectedDense, string(contents, num_bytes));
							 | 
						|
								        } else {
							 | 
						|
								            EXPECT_EQ(kExpectedSparse, string(contents, num_bytes));
							 | 
						|
								        }
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // Do it again with new-style serialization.  Here we can use StringIO.
							 | 
						|
								    if (ht_out.supports_serialization()) {
							 | 
						|
								        string stringbuf;
							 | 
						|
								        StringIO stringio(&stringbuf);
							 | 
						|
								        EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(),
							 | 
						|
								                                     &stringio));
							 | 
						|
								        if (stringbuf[0] == kExpectedDense[0]) {
							 | 
						|
								            EXPECT_EQ(kExpectedDense, stringbuf);
							 | 
						|
								        } else {
							 | 
						|
								            EXPECT_EQ(kExpectedSparse, stringbuf);
							 | 
						|
								        }
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// ------------------------------------------------------------------------
							 | 
						|
								// The above tests test the general API for correctness.  These tests
							 | 
						|
								// test a few corner cases that have tripped us up in the past, and
							 | 
						|
								// more general, cross-API issues like memory management.
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, BracketOperatorCrashing) 
							 | 
						|
								{
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    for (int iters = 0; iters < 10; iters++) {
							 | 
						|
								        // We start at 33 because after shrinking, we'll be at 32 buckets.
							 | 
						|
								        for (int i = 33; i < 133; i++) {
							 | 
						|
								            this->ht_.bracket_assign(this->UniqueKey(i),
							 | 
						|
								                                     this->ht_.get_data(this->UniqueObject(i)));
							 | 
						|
								        }
							 | 
						|
								        this->ht_.clear_no_resize();
							 | 
						|
								        // This will force a shrink on the next insert, which we want to test.
							 | 
						|
								        this->ht_.bracket_assign(this->UniqueKey(2),
							 | 
						|
								                                 this->ht_.get_data(this->UniqueObject(2)));
							 | 
						|
								        this->ht_.erase(this->UniqueKey(2));
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// For data types with trivial copy-constructors and destructors, we
							 | 
						|
								// should use an optimized routine for data-copying, that involves
							 | 
						|
								// memmove.  We test this by keeping count of how many times the
							 | 
						|
								// copy-constructor is called; it should be much less with the
							 | 
						|
								// optimized code.
							 | 
						|
								struct Memmove 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    Memmove(): i(0) {}
							 | 
						|
								    explicit Memmove(int ival): i(ival) {}
							 | 
						|
								    Memmove(const Memmove& that) { this->i = that.i; num_copies++; }
							 | 
						|
								    int i;
							 | 
						|
								    static int num_copies;
							 | 
						|
								};
							 | 
						|
								int Memmove::num_copies = 0;
							 | 
						|
								
							 | 
						|
								struct NoMemmove 
							 | 
						|
								{
							 | 
						|
								public:
							 | 
						|
								    NoMemmove(): i(0) {}
							 | 
						|
								    explicit NoMemmove(int ival): i(ival) {}
							 | 
						|
								    NoMemmove(const NoMemmove& that) { this->i = that.i; num_copies++; }
							 | 
						|
								    int i;
							 | 
						|
								    static int num_copies;
							 | 
						|
								};
							 | 
						|
								int NoMemmove::num_copies = 0;
							 | 
						|
								
							 | 
						|
								} // unnamed namespace
							 | 
						|
								
							 | 
						|
								#if 0
							 | 
						|
								// This is what tells the hashtable code it can use memmove for this class:
							 | 
						|
								namespace google {
							 | 
						|
								
							 | 
						|
								template<> struct has_trivial_copy<Memmove> : true_type { };
							 | 
						|
								template<> struct has_trivial_destructor<Memmove> : true_type { };
							 | 
						|
								
							 | 
						|
								};
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								namespace 
							 | 
						|
								{
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, SimpleDataTypeOptimizations) 
							 | 
						|
								{
							 | 
						|
								    // Only sparsehashtable optimizes moves in this way.
							 | 
						|
								    sparse_hash_map<int, Memmove, Hasher, Hasher> memmove;
							 | 
						|
								    sparse_hash_map<int, NoMemmove, Hasher, Hasher> nomemmove;
							 | 
						|
								    sparse_hash_map<int, Memmove, Hasher, Hasher, Alloc<std::pair<const int, Memmove> > >
							 | 
						|
								        memmove_nonstandard_alloc;
							 | 
						|
								
							 | 
						|
								    Memmove::num_copies = 0;
							 | 
						|
								    for (int i = 10000; i > 0; i--) {
							 | 
						|
								        memmove[i] = Memmove(i);
							 | 
						|
								    }
							 | 
						|
								    // GP change - const int memmove_copies = Memmove::num_copies;
							 | 
						|
								
							 | 
						|
								    NoMemmove::num_copies = 0;
							 | 
						|
								    for (int i = 10000; i > 0; i--) {
							 | 
						|
								        nomemmove[i] = NoMemmove(i);
							 | 
						|
								    }
							 | 
						|
								    // GP change - const int nomemmove_copies = NoMemmove::num_copies;
							 | 
						|
								
							 | 
						|
								    Memmove::num_copies = 0;
							 | 
						|
								    for (int i = 10000; i > 0; i--) {
							 | 
						|
								        memmove_nonstandard_alloc[i] = Memmove(i);
							 | 
						|
								    }
							 | 
						|
								    // GP change - const int memmove_nonstandard_alloc_copies = Memmove::num_copies;
							 | 
						|
								
							 | 
						|
								    // GP change - commented out following two lines
							 | 
						|
								    //EXPECT_GT(nomemmove_copies, memmove_copies);
							 | 
						|
								    //EXPECT_EQ(nomemmove_copies, memmove_nonstandard_alloc_copies);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ResizeHysteresis) 
							 | 
						|
								{
							 | 
						|
								    // We want to make sure that when we create a hashtable, and then
							 | 
						|
								    // add and delete one element, the size of the hashtable doesn't
							 | 
						|
								    // change.
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    typename TypeParam::size_type old_bucket_count = this->ht_.bucket_count();
							 | 
						|
								    this->ht_.insert(this->UniqueObject(4));
							 | 
						|
								    this->ht_.erase(this->UniqueKey(4));
							 | 
						|
								    this->ht_.insert(this->UniqueObject(4));
							 | 
						|
								    this->ht_.erase(this->UniqueKey(4));
							 | 
						|
								    EXPECT_EQ(old_bucket_count, this->ht_.bucket_count());
							 | 
						|
								
							 | 
						|
								    // Try it again, but with a hashtable that starts very small
							 | 
						|
								    TypeParam ht(2);
							 | 
						|
								    EXPECT_LT(ht.bucket_count(), 32u);   // verify we really do start small
							 | 
						|
								    ht.set_deleted_key(this->UniqueKey(1));
							 | 
						|
								    old_bucket_count = ht.bucket_count();
							 | 
						|
								    ht.insert(this->UniqueObject(4));
							 | 
						|
								    ht.erase(this->UniqueKey(4));
							 | 
						|
								    ht.insert(this->UniqueObject(4));
							 | 
						|
								    ht.erase(this->UniqueKey(4));
							 | 
						|
								    EXPECT_EQ(old_bucket_count, ht.bucket_count());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, ConstKey) 
							 | 
						|
								{
							 | 
						|
								    // Sometimes people write hash_map<const int, int>, even though the
							 | 
						|
								    // const isn't necessary.  Make sure we handle this cleanly.
							 | 
						|
								    sparse_hash_map<const int, int, Hasher, Hasher> shm;
							 | 
						|
								    shm.set_deleted_key(1);
							 | 
						|
								    shm[10] = 20;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ResizeActuallyResizes) 
							 | 
						|
								{
							 | 
						|
								    // This tests for a problem we had where we could repeatedly "resize"
							 | 
						|
								    // a hashtable to the same size it was before, on every insert.
							 | 
						|
								    // -----------------------------------------------------------------
							 | 
						|
								    const typename TypeParam::size_type kSize = 1<<10;   // Pick any power of 2
							 | 
						|
								    const float kResize = 0.8f;    // anything between 0.5 and 1 is fine.
							 | 
						|
								    const int kThreshold = static_cast<int>(kSize * kResize - 1);
							 | 
						|
								    this->ht_.set_resizing_parameters(0, kResize);
							 | 
						|
								    this->ht_.set_deleted_key(this->UniqueKey(kThreshold + 100));
							 | 
						|
								
							 | 
						|
								    // Get right up to the resizing threshold.
							 | 
						|
								    for (int i = 0; i <= kThreshold; i++) {
							 | 
						|
								        this->ht_.insert(this->UniqueObject(i+1));
							 | 
						|
								    }
							 | 
						|
								    // The bucket count should equal kSize.
							 | 
						|
								    EXPECT_EQ(kSize, this->ht_.bucket_count());
							 | 
						|
								
							 | 
						|
								    // Now start doing erase+insert pairs.  This should cause us to
							 | 
						|
								    // copy the hashtable at most once.
							 | 
						|
								    const int pre_copies = this->ht_.num_table_copies();
							 | 
						|
								    for (int i = 0; i < static_cast<int>(kSize); i++) {
							 | 
						|
								        this->ht_.erase(this->UniqueKey(kThreshold));
							 | 
						|
								        this->ht_.insert(this->UniqueObject(kThreshold));
							 | 
						|
								    }
							 | 
						|
								    EXPECT_LT(this->ht_.num_table_copies(), pre_copies + 2);
							 | 
						|
								
							 | 
						|
								    // Now create a hashtable where we go right to the threshold, then
							 | 
						|
								    // delete everything and do one insert.  Even though our hashtable
							 | 
						|
								    // is now tiny, we should still have at least kSize buckets, because
							 | 
						|
								    // our shrink threshhold is 0.
							 | 
						|
								    // -----------------------------------------------------------------
							 | 
						|
								    TypeParam ht2;
							 | 
						|
								    ht2.set_deleted_key(this->UniqueKey(kThreshold + 100));
							 | 
						|
								    ht2.set_resizing_parameters(0, kResize);
							 | 
						|
								    EXPECT_LT(ht2.bucket_count(), kSize);
							 | 
						|
								    for (int i = 0; i <= kThreshold; i++) {
							 | 
						|
								        ht2.insert(this->UniqueObject(i+1));
							 | 
						|
								    }
							 | 
						|
								    EXPECT_EQ(ht2.bucket_count(), kSize);
							 | 
						|
								    for (int i = 0; i <= kThreshold; i++) {
							 | 
						|
								        ht2.erase(this->UniqueKey(i+1));
							 | 
						|
								        EXPECT_EQ(ht2.bucket_count(), kSize);
							 | 
						|
								    }
							 | 
						|
								    ht2.insert(this->UniqueObject(kThreshold+2));
							 | 
						|
								    EXPECT_GE(ht2.bucket_count(), kSize);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, CXX11) 
							 | 
						|
								{
							 | 
						|
								#if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
							 | 
						|
								    {
							 | 
						|
								        // Initializer lists
							 | 
						|
								        // -----------------
							 | 
						|
								        typedef sparse_hash_map<int, int> Smap;
							 | 
						|
								
							 | 
						|
								        Smap smap({ {1, 1}, {2, 2} });
							 | 
						|
								        EXPECT_EQ(smap.size(), 2);
							 | 
						|
								
							 | 
						|
								        smap = { {1, 1}, {2, 2}, {3, 4} };
							 | 
						|
								        EXPECT_EQ(smap.size(), 3);
							 | 
						|
								
							 | 
						|
								        smap.insert({{5, 1}, {6, 1}});
							 | 
						|
								        EXPECT_EQ(smap.size(), 5);
							 | 
						|
								        EXPECT_EQ(smap[6], 1);
							 | 
						|
								        EXPECT_EQ(smap.at(6), 1);
							 | 
						|
								        try
							 | 
						|
								        {
							 | 
						|
								            EXPECT_EQ(smap.at(999), 1);
							 | 
						|
								        }
							 | 
						|
								        catch (...)
							 | 
						|
								        {};
							 | 
						|
								
							 | 
						|
								        sparse_hash_set<int> sset({ 1, 3, 4, 5 });
							 | 
						|
								        EXPECT_EQ(sset.size(), 4);
							 | 
						|
								    }
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								TEST(HashtableTest, NestedHashtables) 
							 | 
						|
								{
							 | 
						|
								    // People can do better than to have a hash_map of hash_maps, but we
							 | 
						|
								    // should still support it.  I try a few different mappings.
							 | 
						|
								    sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher> ht1;
							 | 
						|
								
							 | 
						|
								    ht1["hi"];   // create a sub-ht with the default values
							 | 
						|
								    ht1["lo"][1] = "there";
							 | 
						|
								    sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher>
							 | 
						|
								        ht1copy = ht1;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableDeathTest, ResizeOverflow) 
							 | 
						|
								{
							 | 
						|
								    sparse_hash_map<int, int> ht2;
							 | 
						|
								    EXPECT_DEATH(ht2.resize(static_cast<size_t>(-1)), "overflows size_type");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableDeathTest, InsertSizeTypeOverflow) 
							 | 
						|
								{
							 | 
						|
								    static const int kMax = 256;
							 | 
						|
								    vector<int> test_data(kMax);
							 | 
						|
								    for (int i = 0; i < kMax; ++i) {
							 | 
						|
								        test_data[(size_t)i] = i+1000;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
							 | 
						|
								
							 | 
						|
								    // Test we are using the correct allocator
							 | 
						|
								    EXPECT_TRUE(shs.get_allocator().is_custom_alloc());
							 | 
						|
								
							 | 
						|
								    // Test size_type overflow in insert(it, it)
							 | 
						|
								    EXPECT_DEATH(shs.insert(test_data.begin(), test_data.end()), "overflows size_type");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableDeathTest, InsertMaxSizeOverflow) 
							 | 
						|
								{
							 | 
						|
								    static const int kMax = 256;
							 | 
						|
								    vector<int> test_data(kMax);
							 | 
						|
								    for (int i = 0; i < kMax; ++i) {
							 | 
						|
								        test_data[(size_t)i] = i+1000;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
							 | 
						|
								
							 | 
						|
								    // Test max_size overflow
							 | 
						|
								    EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 11), "exceed max_size");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableDeathTest, ResizeSizeTypeOverflow) 
							 | 
						|
								{
							 | 
						|
								    // Test min-buckets overflow, when we want to resize too close to size_type
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
							 | 
						|
								
							 | 
						|
								    EXPECT_DEATH(shs.resize(250), "overflows size_type");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								TEST(HashtableDeathTest, ResizeDeltaOverflow) 
							 | 
						|
								{
							 | 
						|
								    static const int kMax = 256;
							 | 
						|
								    vector<int> test_data(kMax);
							 | 
						|
								    for (int i = 0; i < kMax; ++i) {
							 | 
						|
								        test_data[(size_t)i] = i+1000;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 255> > shs;
							 | 
						|
								
							 | 
						|
								    for (int i = 0; i < 9; i++) {
							 | 
						|
								        shs.insert(i);
							 | 
						|
								    }
							 | 
						|
								    EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 250),
							 | 
						|
								                 "overflows size_type");
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// ------------------------------------------------------------------------
							 | 
						|
								// This informational "test" comes last so it's easy to see.
							 | 
						|
								// Also, benchmarks.
							 | 
						|
								
							 | 
						|
								TYPED_TEST(HashtableAllTest, ClassSizes) 
							 | 
						|
								{
							 | 
						|
								    std::cout << "sizeof(" << typeid(TypeParam).name() << "): "
							 | 
						|
								              << sizeof(this->ht_) << "\n";
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								}  // unnamed namespace
							 | 
						|
								
							 | 
						|
								int main(int, char **) 
							 | 
						|
								{
							 | 
						|
								    // All the work is done in the static constructors.  If they don't
							 | 
						|
								    // die, the tests have all passed.
							 | 
						|
								    cout << "PASS\n";
							 | 
						|
								    return 0;
							 | 
						|
								}
							 |