You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							135 lines
						
					
					
						
							7.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							135 lines
						
					
					
						
							7.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void syrk(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, RowMajor> RMatrixType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
							 | 
						|
								  typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3 = MatrixType::Random(rows, cols);
							 | 
						|
								  RMatrixType rm2 = MatrixType::Random(rows, cols);
							 | 
						|
								
							 | 
						|
								  Rhs1 rhs1 = Rhs1::Random(internal::random<int>(1,320), cols); Rhs1 rhs11 = Rhs1::Random(rhs1.rows(), cols);
							 | 
						|
								  Rhs2 rhs2 = Rhs2::Random(rows, internal::random<int>(1,320)); Rhs2 rhs22 = Rhs2::Random(rows, rhs2.cols());
							 | 
						|
								  Rhs3 rhs3 = Rhs3::Random(internal::random<int>(1,320), rows);
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								  
							 | 
						|
								  Index c = internal::random<Index>(0,cols-1);
							 | 
						|
								
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2,s1)._expression()),
							 | 
						|
								                   ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(((m2.template triangularView<Lower>() += s1 * rhs2  * rhs22.adjoint()).nestedExpression()),
							 | 
						|
								                   ((s1 * rhs2 * rhs22.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2,s1)._expression(),
							 | 
						|
								                   (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * rhs22 * rhs2.adjoint()).nestedExpression(),
							 | 
						|
								                   (s1 * rhs22 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(),
							 | 
						|
								                   (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * rhs11.adjoint() * rhs1).nestedExpression(),
							 | 
						|
								                   (s1 * rhs11.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
							 | 
						|
								  
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(),
							 | 
						|
								                   (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								  VERIFY_IS_APPROX((m2.template triangularView<Upper>() = s1 * rhs1.adjoint() * rhs11).nestedExpression(),
							 | 
						|
								                   (s1 * rhs1.adjoint() * rhs11).eval().template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(),
							 | 
						|
								                   (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix());
							 | 
						|
								
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(),
							 | 
						|
								                   (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix());
							 | 
						|
								                   
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								                   
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								  rm2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((rm2.template selfadjointView<Upper>().rankUpdate(m1.col(c),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * m3.col(c) * m1.col(c).adjoint()).nestedExpression(),
							 | 
						|
								                   ((s1 * m3.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								  rm2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((rm2.template triangularView<Upper>() += s1 * m1.col(c) * m3.col(c).adjoint()).nestedExpression(),
							 | 
						|
								                   ((s1 * m1.col(c) * m3.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c).conjugate(),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								                   
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c).conjugate(),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								  
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.row(c),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								  rm2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((rm2.template selfadjointView<Lower>().rankUpdate(m1.row(c),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint()).nestedExpression(),
							 | 
						|
								                   ((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								  rm2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((rm2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint()).nestedExpression(),
							 | 
						|
								                   ((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
							 | 
						|
								  
							 | 
						|
								  
							 | 
						|
								  m2.setZero();
							 | 
						|
								  VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.row(c).adjoint(),s1)._expression()),
							 | 
						|
								                   ((s1 * m1.row(c).adjoint() * m1.row(c).adjoint().adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_product_syrk()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat ; i++)
							 | 
						|
								  {
							 | 
						|
								    int s;
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								    CALL_SUBTEST_1( syrk(MatrixXf(s, s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								    CALL_SUBTEST_2( syrk(MatrixXd(s, s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
							 | 
						|
								    CALL_SUBTEST_3( syrk(MatrixXcf(s, s)) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
							 | 
						|
								    CALL_SUBTEST_4( syrk(MatrixXcd(s, s)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |