You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							183 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							183 lines
						
					
					
						
							5.7 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								#include <Eigen/Core>
							 | 
						|
								#include <Eigen/Geometry>
							 | 
						|
								
							 | 
						|
								#include <Eigen/LU> // required for MatrixBase::determinant
							 | 
						|
								#include <Eigen/SVD> // required for SVD
							 | 
						|
								
							 | 
						|
								using namespace Eigen;
							 | 
						|
								
							 | 
						|
								//  Constructs a random matrix from the unitary group U(size).
							 | 
						|
								template <typename T>
							 | 
						|
								Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
							 | 
						|
								{
							 | 
						|
								  typedef T Scalar;
							 | 
						|
								  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
							 | 
						|
								
							 | 
						|
								  MatrixType Q;
							 | 
						|
								
							 | 
						|
								  int max_tries = 40;
							 | 
						|
								  double is_unitary = false;
							 | 
						|
								
							 | 
						|
								  while (!is_unitary && max_tries > 0)
							 | 
						|
								  {
							 | 
						|
								    // initialize random matrix
							 | 
						|
								    Q = MatrixType::Random(size, size);
							 | 
						|
								
							 | 
						|
								    // orthogonalize columns using the Gram-Schmidt algorithm
							 | 
						|
								    for (int col = 0; col < size; ++col)
							 | 
						|
								    {
							 | 
						|
								      typename MatrixType::ColXpr colVec = Q.col(col);
							 | 
						|
								      for (int prevCol = 0; prevCol < col; ++prevCol)
							 | 
						|
								      {
							 | 
						|
								        typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
							 | 
						|
								        colVec -= colVec.dot(prevColVec)*prevColVec;
							 | 
						|
								      }
							 | 
						|
								      Q.col(col) = colVec.normalized();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // this additional orthogonalization is not necessary in theory but should enhance
							 | 
						|
								    // the numerical orthogonality of the matrix
							 | 
						|
								    for (int row = 0; row < size; ++row)
							 | 
						|
								    {
							 | 
						|
								      typename MatrixType::RowXpr rowVec = Q.row(row);
							 | 
						|
								      for (int prevRow = 0; prevRow < row; ++prevRow)
							 | 
						|
								      {
							 | 
						|
								        typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
							 | 
						|
								        rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
							 | 
						|
								      }
							 | 
						|
								      Q.row(row) = rowVec.normalized();
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // final check
							 | 
						|
								    is_unitary = Q.isUnitary();
							 | 
						|
								    --max_tries;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  if (max_tries == 0)
							 | 
						|
								    eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
							 | 
						|
								
							 | 
						|
								  return Q;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								//  Constructs a random matrix from the special unitary group SU(size).
							 | 
						|
								template <typename T>
							 | 
						|
								Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
							 | 
						|
								{
							 | 
						|
								  typedef T Scalar;
							 | 
						|
								
							 | 
						|
								  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
							 | 
						|
								
							 | 
						|
								  // initialize unitary matrix
							 | 
						|
								  MatrixType Q = randMatrixUnitary<Scalar>(size);
							 | 
						|
								
							 | 
						|
								  // tweak the first column to make the determinant be 1
							 | 
						|
								  Q.col(0) *= numext::conj(Q.determinant());
							 | 
						|
								
							 | 
						|
								  return Q;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename MatrixType>
							 | 
						|
								void run_test(int dim, int num_elements)
							 | 
						|
								{
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef typename internal::traits<MatrixType>::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
							 | 
						|
								  typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
							 | 
						|
								
							 | 
						|
								  // MUST be positive because in any other case det(cR_t) may become negative for
							 | 
						|
								  // odd dimensions!
							 | 
						|
								  const Scalar c = abs(internal::random<Scalar>());
							 | 
						|
								
							 | 
						|
								  MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
							 | 
						|
								  VectorX t = Scalar(50)*VectorX::Random(dim,1);
							 | 
						|
								
							 | 
						|
								  MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
							 | 
						|
								  cR_t.block(0,0,dim,dim) = c*R;
							 | 
						|
								  cR_t.block(0,dim,dim,1) = t;
							 | 
						|
								
							 | 
						|
								  MatrixX src = MatrixX::Random(dim+1, num_elements);
							 | 
						|
								  src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
							 | 
						|
								
							 | 
						|
								  MatrixX dst = cR_t*src;
							 | 
						|
								
							 | 
						|
								  MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
							 | 
						|
								
							 | 
						|
								  const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm();
							 | 
						|
								  VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar, int Dimension>
							 | 
						|
								void run_fixed_size_test(int num_elements)
							 | 
						|
								{
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
							 | 
						|
								  typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
							 | 
						|
								  typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
							 | 
						|
								  typedef Matrix<Scalar, Dimension, 1> FixedVector;
							 | 
						|
								
							 | 
						|
								  const int dim = Dimension;
							 | 
						|
								
							 | 
						|
								  // MUST be positive because in any other case det(cR_t) may become negative for
							 | 
						|
								  // odd dimensions!
							 | 
						|
								  // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
							 | 
						|
								  const Scalar c = internal::random<Scalar>(0.5, 2.0);
							 | 
						|
								
							 | 
						|
								  FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
							 | 
						|
								  FixedVector t = Scalar(32)*FixedVector::Random(dim,1);
							 | 
						|
								
							 | 
						|
								  HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
							 | 
						|
								  cR_t.block(0,0,dim,dim) = c*R;
							 | 
						|
								  cR_t.block(0,dim,dim,1) = t;
							 | 
						|
								
							 | 
						|
								  MatrixX src = MatrixX::Random(dim+1, num_elements);
							 | 
						|
								  src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
							 | 
						|
								
							 | 
						|
								  MatrixX dst = cR_t*src;
							 | 
						|
								
							 | 
						|
								  Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
							 | 
						|
								  Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
							 | 
						|
								
							 | 
						|
								  HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
							 | 
						|
								
							 | 
						|
								  const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm();
							 | 
						|
								
							 | 
						|
								  VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_umeyama()
							 | 
						|
								{
							 | 
						|
								  for (int i=0; i<g_repeat; ++i)
							 | 
						|
								  {
							 | 
						|
								    const int num_elements = internal::random<int>(40,500);
							 | 
						|
								
							 | 
						|
								    // works also for dimensions bigger than 3...
							 | 
						|
								    for (int dim=2; dim<8; ++dim)
							 | 
						|
								    {
							 | 
						|
								      CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
							 | 
						|
								      CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
							 | 
						|
								    CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
							 | 
						|
								    CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
							 | 
						|
								
							 | 
						|
								    CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
							 | 
						|
								    CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
							 | 
						|
								    CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Those two calls don't compile and result in meaningful error messages!
							 | 
						|
								  // umeyama(MatrixXcf(),MatrixXcf());
							 | 
						|
								  // umeyama(MatrixXcd(),MatrixXcd());
							 | 
						|
								}
							 |