You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							112 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							112 lines
						
					
					
						
							3.9 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <limits>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								
							 | 
						|
								  const Index size = T.cols();
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  // Check T is lower Hessenberg
							 | 
						|
								  for(int row = 2; row < size; ++row) {
							 | 
						|
								    for(int col = 0; col < row - 1; ++col) {
							 | 
						|
								      VERIFY(T(row,col) == Scalar(0));
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Check that any non-zero on the subdiagonal is followed by a zero and is
							 | 
						|
								  // part of a 2x2 diagonal block with imaginary eigenvalues.
							 | 
						|
								  for(int row = 1; row < size; ++row) {
							 | 
						|
								    if (T(row,row-1) != Scalar(0)) {
							 | 
						|
								      VERIFY(row == size-1 || T(row+1,row) == 0);
							 | 
						|
								      Scalar tr = T(row-1,row-1) + T(row,row);
							 | 
						|
								      Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
							 | 
						|
								      VERIFY(4 * det > tr * tr);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
							 | 
						|
								{
							 | 
						|
								  // Test basic functionality: T is quasi-triangular and A = U T U*
							 | 
						|
								  for(int counter = 0; counter < g_repeat; ++counter) {
							 | 
						|
								    MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								    RealSchur<MatrixType> schurOfA(A);
							 | 
						|
								    VERIFY_IS_EQUAL(schurOfA.info(), Success);
							 | 
						|
								    MatrixType U = schurOfA.matrixU();
							 | 
						|
								    MatrixType T = schurOfA.matrixT();
							 | 
						|
								    verifyIsQuasiTriangular(T);
							 | 
						|
								    VERIFY_IS_APPROX(A, U * T * U.transpose());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Test asserts when not initialized
							 | 
						|
								  RealSchur<MatrixType> rsUninitialized;
							 | 
						|
								  VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
							 | 
						|
								  VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
							 | 
						|
								  VERIFY_RAISES_ASSERT(rsUninitialized.info());
							 | 
						|
								  
							 | 
						|
								  // Test whether compute() and constructor returns same result
							 | 
						|
								  MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								  RealSchur<MatrixType> rs1;
							 | 
						|
								  rs1.compute(A);
							 | 
						|
								  RealSchur<MatrixType> rs2(A);
							 | 
						|
								  VERIFY_IS_EQUAL(rs1.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(rs2.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
							 | 
						|
								  VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
							 | 
						|
								
							 | 
						|
								  // Test maximum number of iterations
							 | 
						|
								  RealSchur<MatrixType> rs3;
							 | 
						|
								  rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
							 | 
						|
								  if (size > 2) {
							 | 
						|
								    rs3.setMaxIterations(1).compute(A);
							 | 
						|
								    VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
							 | 
						|
								    VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  MatrixType Atriangular = A;
							 | 
						|
								  Atriangular.template triangularView<StrictlyLower>().setZero(); 
							 | 
						|
								  rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
							 | 
						|
								  VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
							 | 
						|
								
							 | 
						|
								  // Test computation of only T, not U
							 | 
						|
								  RealSchur<MatrixType> rsOnlyT(A, false);
							 | 
						|
								  VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
							 | 
						|
								  VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
							 | 
						|
								
							 | 
						|
								  if (size > 2)
							 | 
						|
								  {
							 | 
						|
								    // Test matrix with NaN
							 | 
						|
								    A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
							 | 
						|
								    RealSchur<MatrixType> rsNaN(A);
							 | 
						|
								    VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_schur_real()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_1(( schur<Matrix4f>() ));
							 | 
						|
								  CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
							 | 
						|
								  CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() ));
							 | 
						|
								  CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() ));
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
							 | 
						|
								}
							 |