You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							133 lines
						
					
					
						
							4.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							133 lines
						
					
					
						
							4.9 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "common.h" | |
|  | |
| struct scalar_norm1_op { | |
|   typedef RealScalar result_type; | |
|   STORMEIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op) | |
|   inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); } | |
| }; | |
| namespace StormEigen { | |
|   namespace internal { | |
|     template<> struct functor_traits<scalar_norm1_op > | |
|     { | |
|       enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; | |
|     }; | |
|   } | |
| } | |
| 
 | |
| // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum | |
| // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n | |
| RealScalar STORMEIGEN_CAT(STORMEIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx) | |
| { | |
| //   std::cerr << "__asum " << *n << " " << *incx << "\n"; | |
|   Complex* x = reinterpret_cast<Complex*>(px); | |
| 
 | |
|   if(*n<=0) return 0; | |
| 
 | |
|   if(*incx==1)  return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum(); | |
|   else          return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); | |
| } | |
| 
 | |
| // computes a dot product of a conjugated vector with another vector. | |
| int STORMEIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) | |
| { | |
| //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; | |
|   Scalar* res = reinterpret_cast<Scalar*>(pres); | |
| 
 | |
|   if(*n<=0) | |
|   { | |
|     *res = Scalar(0); | |
|     return 0; | |
|   } | |
| 
 | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
| 
 | |
|   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).dot(make_vector(y,*n))); | |
|   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy))); | |
|   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy))); | |
|   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse())); | |
|   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse())); | |
|   return 0; | |
| } | |
| 
 | |
| // computes a vector-vector dot product without complex conjugation. | |
| int STORMEIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) | |
| { | |
|   Scalar* res = reinterpret_cast<Scalar*>(pres); | |
| 
 | |
|   if(*n<=0) | |
|   { | |
|     *res = Scalar(0); | |
|     return 0; | |
|   } | |
| 
 | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
| 
 | |
|   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum(); | |
|   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum(); | |
|   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum(); | |
|   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); | |
|   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); | |
|   return 0; | |
| } | |
| 
 | |
| RealScalar STORMEIGEN_CAT(STORMEIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx) | |
| { | |
| //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; | |
|   if(*n<=0) return 0; | |
| 
 | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
| 
 | |
|   if(*incx==1) | |
|     return make_vector(x,*n).stableNorm(); | |
| 
 | |
|   return make_vector(x,*n,*incx).stableNorm(); | |
| } | |
| 
 | |
| int STORMEIGEN_CAT(STORMEIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) | |
| { | |
|   if(*n<=0) return 0; | |
| 
 | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   RealScalar c = *pc; | |
|   RealScalar s = *ps; | |
| 
 | |
|   StridedVectorType vx(make_vector(x,*n,std::abs(*incx))); | |
|   StridedVectorType vy(make_vector(y,*n,std::abs(*incy))); | |
| 
 | |
|   Reverse<StridedVectorType> rvx(vx); | |
|   Reverse<StridedVectorType> rvy(vy); | |
| 
 | |
|   // TODO implement mixed real-scalar rotations | |
|        if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s)); | |
|   else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s)); | |
|   else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s)); | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| int STORMEIGEN_CAT(STORMEIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | |
| { | |
|   if(*n<=0) return 0; | |
| 
 | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   RealScalar alpha = *palpha; | |
| 
 | |
| //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; | |
|  | |
|   if(*incx==1)  make_vector(x,*n) *= alpha; | |
|   else          make_vector(x,*n,std::abs(*incx)) *= alpha; | |
| 
 | |
|   return 0; | |
| }
 |