You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

710 lines
36 KiB

#include "storm/solver/NativeLinearEquationSolver.h"
#include <utility>
#include "storm/settings/SettingsManager.h"
#include "storm/settings/modules/GeneralSettings.h"
#include "storm/settings/modules/NativeEquationSolverSettings.h"
#include "storm/utility/constants.h"
#include "storm/utility/vector.h"
#include "storm/exceptions/InvalidStateException.h"
#include "storm/exceptions/InvalidSettingsException.h"
#include "storm/exceptions/UnmetRequirementException.h"
namespace storm {
namespace solver {
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType>::NativeLinearEquationSolverSettings() {
storm::settings::modules::NativeEquationSolverSettings const& settings = storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>();
storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod methodAsSetting = settings.getLinearEquationSystemMethod();
if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::GaussSeidel) {
method = SolutionMethod::GaussSeidel;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::Jacobi) {
method = SolutionMethod::Jacobi;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::SOR) {
method = SolutionMethod::SOR;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::WalkerChae) {
method = SolutionMethod::WalkerChae;
} else if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::Power) {
method = SolutionMethod::Power;
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "The selected solution technique is invalid for this solver.");
}
maximalNumberOfIterations = settings.getMaximalIterationCount();
precision = settings.getPrecision();
relative = settings.getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative;
omega = settings.getOmega();
multiplicationStyle = settings.getPowerMethodMultiplicationStyle();
// Finally force soundness and potentially overwrite some other settings.
this->setForceSoundness(storm::settings::getModule<storm::settings::modules::GeneralSettings>().isSoundSet());
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setSolutionMethod(SolutionMethod const& method) {
this->method = method;
// Make sure we switch the method if we have to guarantee soundness.
this->setForceSoundness(forceSoundness);
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setPrecision(ValueType precision) {
this->precision = precision;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setMaximalNumberOfIterations(uint64_t maximalNumberOfIterations) {
this->maximalNumberOfIterations = maximalNumberOfIterations;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setRelativeTerminationCriterion(bool value) {
this->relative = value;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setOmega(ValueType omega) {
this->omega = omega;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setPowerMethodMultiplicationStyle(MultiplicationStyle value) {
this->multiplicationStyle = value;
}
template<typename ValueType>
void NativeLinearEquationSolverSettings<ValueType>::setForceSoundness(bool value) {
forceSoundness = value;
if (forceSoundness) {
STORM_LOG_WARN_COND(method != SolutionMethod::Power, "To guarantee soundness, the equation solving technique has been switched to '" << storm::settings::modules::NativeEquationSolverSettings::LinearEquationMethod::Power << "'.");
method = SolutionMethod::Power;
}
}
template<typename ValueType>
typename NativeLinearEquationSolverSettings<ValueType>::SolutionMethod NativeLinearEquationSolverSettings<ValueType>::getSolutionMethod() const {
return method;
}
template<typename ValueType>
ValueType NativeLinearEquationSolverSettings<ValueType>::getPrecision() const {
return precision;
}
template<typename ValueType>
uint64_t NativeLinearEquationSolverSettings<ValueType>::getMaximalNumberOfIterations() const {
return maximalNumberOfIterations;
}
template<typename ValueType>
uint64_t NativeLinearEquationSolverSettings<ValueType>::getRelativeTerminationCriterion() const {
return relative;
}
template<typename ValueType>
ValueType NativeLinearEquationSolverSettings<ValueType>::getOmega() const {
return omega;
}
template<typename ValueType>
MultiplicationStyle NativeLinearEquationSolverSettings<ValueType>::getPowerMethodMultiplicationStyle() const {
return multiplicationStyle;
}
template<typename ValueType>
bool NativeLinearEquationSolverSettings<ValueType>::getForceSoundness() const {
return forceSoundness;
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(NativeLinearEquationSolverSettings<ValueType> const& settings) : localA(nullptr), A(nullptr), settings(settings) {
// Intentionally left empty.
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, NativeLinearEquationSolverSettings<ValueType> const& settings) : localA(nullptr), A(nullptr), settings(settings) {
this->setMatrix(A);
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, NativeLinearEquationSolverSettings<ValueType> const& settings) : localA(nullptr), A(nullptr), settings(settings) {
this->setMatrix(std::move(A));
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType> const& A) {
localA.reset();
this->A = &A;
clearCache();
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType>&& A) {
localA = std::make_unique<storm::storage::SparseMatrix<ValueType>>(std::move(A));
this->A = localA.get();
clearCache();
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsSOR(std::vector<ValueType>& x, std::vector<ValueType> const& b, ValueType const& omega) const {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (Gauss-Seidel, SOR omega = " << omega << ")");
if (!this->cachedRowVector) {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
// Set up additional environment variables.
uint_fast64_t iterations = 0;
bool converged = false;
bool terminate = false;
while (!converged && !terminate && iterations < this->getSettings().getMaximalNumberOfIterations()) {
A->performSuccessiveOverRelaxationStep(omega, x, b);
// Now check if the process already converged within our precision.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*this->cachedRowVector, x, static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion());
terminate = this->terminateNow(x, SolverGuarantee::None);
// If we did not yet converge, we need to backup the contents of x.
if (!converged) {
*this->cachedRowVector = x;
}
// Increase iteration count so we can abort if convergence is too slow.
++iterations;
}
if (!this->isCachingEnabled()) {
clearCache();
}
this->logIterations(converged, terminate, iterations);
return converged;
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsJacobi(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (Jacobi)");
if (!this->cachedRowVector) {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
// Get a Jacobi decomposition of the matrix A.
if (!jacobiDecomposition) {
jacobiDecomposition = std::make_unique<std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>>>(A->getJacobiDecomposition());
}
storm::storage::SparseMatrix<ValueType> const& jacobiLU = jacobiDecomposition->first;
std::vector<ValueType> const& jacobiD = jacobiDecomposition->second;
std::vector<ValueType>* currentX = &x;
std::vector<ValueType>* nextX = this->cachedRowVector.get();
// Set up additional environment variables.
uint_fast64_t iterations = 0;
bool converged = false;
bool terminate = false;
while (!converged && !terminate && iterations < this->getSettings().getMaximalNumberOfIterations()) {
// Compute D^-1 * (b - LU * x) and store result in nextX.
multiplier.multAdd(jacobiLU, *currentX, nullptr, *nextX);
storm::utility::vector::subtractVectors(b, *nextX, *nextX);
storm::utility::vector::multiplyVectorsPointwise(jacobiD, *nextX, *nextX);
// Now check if the process already converged within our precision.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *nextX, static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion());
terminate = this->terminateNow(*currentX, SolverGuarantee::None);
// Swap the two pointers as a preparation for the next iteration.
std::swap(nextX, currentX);
// Increase iteration count so we can abort if convergence is too slow.
++iterations;
}
// If the last iteration did not write to the original x we have to swap the contents, because the
// output has to be written to the input parameter x.
if (currentX == this->cachedRowVector.get()) {
std::swap(x, *currentX);
}
if (!this->isCachingEnabled()) {
clearCache();
}
this->logIterations(converged, terminate, iterations);
return converged;
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::WalkerChaeData::WalkerChaeData(storm::storage::SparseMatrix<ValueType> const& originalMatrix, std::vector<ValueType> const& originalB) : t(storm::utility::convertNumber<ValueType>(1000.0)) {
computeWalkerChaeMatrix(originalMatrix);
computeNewB(originalB);
precomputeAuxiliaryData();
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::WalkerChaeData::computeWalkerChaeMatrix(storm::storage::SparseMatrix<ValueType> const& originalMatrix) {
storm::storage::BitVector columnsWithNegativeEntries(originalMatrix.getColumnCount());
ValueType zero = storm::utility::zero<ValueType>();
for (auto const& e : originalMatrix) {
if (e.getValue() < zero) {
columnsWithNegativeEntries.set(e.getColumn());
}
}
std::vector<uint64_t> columnsWithNegativeEntriesBefore = columnsWithNegativeEntries.getNumberOfSetBitsBeforeIndices();
// We now build an extended equation system matrix that only has non-negative coefficients.
storm::storage::SparseMatrixBuilder<ValueType> builder;
uint64_t row = 0;
for (; row < originalMatrix.getRowCount(); ++row) {
for (auto const& entry : originalMatrix.getRow(row)) {
if (entry.getValue() < zero) {
builder.addNextValue(row, originalMatrix.getRowCount() + columnsWithNegativeEntriesBefore[entry.getColumn()], -entry.getValue());
} else {
builder.addNextValue(row, entry.getColumn(), entry.getValue());
}
}
}
ValueType one = storm::utility::one<ValueType>();
for (auto column : columnsWithNegativeEntries) {
builder.addNextValue(row, column, one);
builder.addNextValue(row, originalMatrix.getRowCount() + columnsWithNegativeEntriesBefore[column], one);
++row;
}
matrix = builder.build();
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::WalkerChaeData::computeNewB(std::vector<ValueType> const& originalB) {
b = std::vector<ValueType>(originalB);
b.resize(matrix.getRowCount());
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::WalkerChaeData::precomputeAuxiliaryData() {
columnSums = std::vector<ValueType>(matrix.getColumnCount());
for (auto const& e : matrix) {
columnSums[e.getColumn()] += e.getValue();
}
newX.resize(matrix.getRowCount());
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsWalkerChae(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (WalkerChae)");
// (1) Compute an equivalent equation system that has only non-negative coefficients.
if (!walkerChaeData) {
walkerChaeData = std::make_unique<WalkerChaeData>(*this->A, b);
}
// (2) Enlarge the vectors x and b to account for additional variables.
x.resize(walkerChaeData->matrix.getRowCount());
// Square the error bound, so we can use it to check for convergence. We take the squared error, because we
// do not want to compute the root in the 2-norm computation.
ValueType squaredErrorBound = storm::utility::pow(this->getSettings().getPrecision(), 2);
// Set up references to the x-vectors used in the iteration loop.
std::vector<ValueType>* currentX = &x;
std::vector<ValueType>* nextX = &walkerChaeData->newX;
std::vector<ValueType> tmp = walkerChaeData->matrix.getRowSumVector();
storm::utility::vector::applyPointwise(tmp, walkerChaeData->b, walkerChaeData->b, [this] (ValueType const& first, ValueType const& second) { return walkerChaeData->t * first + second; } );
// Add t to all entries of x.
storm::utility::vector::applyPointwise(x, x, [this] (ValueType const& value) { return value + walkerChaeData->t; });
// Create a vector that always holds Ax.
std::vector<ValueType> currentAx(x.size());
multiplier.multAdd(walkerChaeData->matrix, *currentX, nullptr, currentAx);
// (3) Perform iterations until convergence.
bool converged = false;
uint64_t iterations = 0;
while (!converged && iterations < this->getSettings().getMaximalNumberOfIterations()) {
// Perform one Walker-Chae step.
walkerChaeData->matrix.performWalkerChaeStep(*currentX, walkerChaeData->columnSums, walkerChaeData->b, currentAx, *nextX);
// Compute new Ax.
multiplier.multAdd(walkerChaeData->matrix, *nextX, nullptr, currentAx);
// Check for convergence.
converged = storm::utility::vector::computeSquaredNorm2Difference(currentAx, walkerChaeData->b) <= squaredErrorBound;
// Swap the x vectors for the next iteration.
std::swap(currentX, nextX);
// Increase iteration count so we can abort if convergence is too slow.
++iterations;
}
// If the last iteration did not write to the original x we have to swap the contents, because the
// output has to be written to the input parameter x.
if (currentX == &walkerChaeData->newX) {
std::swap(x, *currentX);
}
// Resize the solution to the right size.
x.resize(this->A->getRowCount());
// Finalize solution vector.
storm::utility::vector::applyPointwise(x, x, [this] (ValueType const& value) { return value - walkerChaeData->t; } );
if (!this->isCachingEnabled()) {
clearCache();
}
if (converged) {
STORM_LOG_INFO("Iterative solver converged in " << iterations << " iterations.");
} else {
STORM_LOG_WARN("Iterative solver did not converge in " << iterations << " iterations.");
}
return converged;
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsPower(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_THROW(this->hasLowerBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (Power)");
if (!this->cachedRowVector) {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
std::vector<ValueType>* currentX = &x;
this->createLowerBoundsVector(*currentX);
std::vector<ValueType>* nextX = this->cachedRowVector.get();
bool useGaussSeidelMultiplication = this->getSettings().getPowerMethodMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
bool converged = false;
bool terminate = this->terminateNow(*currentX, SolverGuarantee::GreaterOrEqual);
uint64_t iterations = 0;
while (!converged && !terminate && iterations < this->getSettings().getMaximalNumberOfIterations()) {
if (useGaussSeidelMultiplication) {
*nextX = *currentX;
this->multiplier.multAddGaussSeidelBackward(*this->A, *nextX, &b);
} else {
this->multiplier.multAdd(*this->A, *currentX, &b, *nextX);
}
// Now check for termination.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *nextX, static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion());
terminate = this->terminateNow(*currentX, SolverGuarantee::GreaterOrEqual);
// Set up next iteration.
std::swap(currentX, nextX);
++iterations;
}
if (currentX == this->cachedRowVector.get()) {
std::swap(x, *nextX);
}
if (!this->isCachingEnabled()) {
clearCache();
}
this->logIterations(converged, terminate, iterations);
return converged;
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsSoundPower(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_THROW(this->hasLowerBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_THROW(this->hasUpperBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (SoundPower)");
std::vector<ValueType>* lowerX = &x;
this->createLowerBoundsVector(*lowerX);
this->createUpperBoundsVector(this->cachedRowVector, this->getMatrixRowCount());
std::vector<ValueType>* upperX = this->cachedRowVector.get();
bool useGaussSeidelMultiplication = this->getSettings().getPowerMethodMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
std::vector<ValueType>* tmp;
if (!useGaussSeidelMultiplication) {
cachedRowVector2 = std::make_unique<std::vector<ValueType>>(x.size());
tmp = cachedRowVector2.get();
}
bool converged = false;
bool terminate = false;
uint64_t iterations = 0;
bool doConvergenceCheck = false;
ValueType upperDiff;
ValueType lowerDiff;
while (!converged && !terminate && iterations < this->getSettings().getMaximalNumberOfIterations()) {
// Remember in which directions we took steps in this iteration.
bool lowerStep = false;
bool upperStep = false;
// In every thousandth iteration, we improve both bounds.
if (iterations % 1000 == 0) {
lowerStep = true;
upperStep = true;
if (useGaussSeidelMultiplication) {
lowerDiff = (*lowerX)[0];
this->multiplier.multAddGaussSeidelBackward(*this->A, *lowerX, &b);
lowerDiff = (*lowerX)[0] - lowerDiff;
upperDiff = (*upperX)[0];
this->multiplier.multAddGaussSeidelBackward(*this->A, *upperX, &b);
upperDiff = upperDiff - (*upperX)[0];
} else {
this->multiplier.multAdd(*this->A, *lowerX, &b, *tmp);
lowerDiff = (*tmp)[0] - (*lowerX)[0];
std::swap(tmp, lowerX);
this->multiplier.multAdd(*this->A, *upperX, &b, *tmp);
upperDiff = (*upperX)[0] - (*tmp)[0];
std::swap(tmp, upperX);
}
} else {
// In the following iterations, we improve the bound with the greatest difference.
if (useGaussSeidelMultiplication) {
if (lowerDiff >= upperDiff) {
lowerDiff = (*lowerX)[0];
this->multiplier.multAddGaussSeidelBackward(*this->A, *lowerX, &b);
lowerDiff = (*lowerX)[0] - lowerDiff;
lowerStep = true;
} else {
upperDiff = (*upperX)[0];
this->multiplier.multAddGaussSeidelBackward(*this->A, *upperX, &b);
upperDiff = upperDiff - (*upperX)[0];
upperStep = true;
}
} else {
if (lowerDiff >= upperDiff) {
this->multiplier.multAdd(*this->A, *lowerX, &b, *tmp);
lowerDiff = (*tmp)[0] - (*lowerX)[0];
std::swap(tmp, lowerX);
lowerStep = true;
} else {
this->multiplier.multAdd(*this->A, *upperX, &b, *tmp);
upperDiff = (*upperX)[0] - (*tmp)[0];
std::swap(tmp, upperX);
upperStep = true;
}
}
}
STORM_LOG_ASSERT(lowerDiff >= storm::utility::zero<ValueType>(), "Expected non-negative lower diff.");
STORM_LOG_ASSERT(upperDiff >= storm::utility::zero<ValueType>(), "Expected non-negative upper diff.");
if (iterations % 1000 == 0) {
STORM_LOG_TRACE("Iteration " << iterations << ": lower difference: " << lowerDiff << ", upper difference: " << upperDiff << ".");
}
if (doConvergenceCheck) {
// Now check if the process already converged within our precision. Note that we double the target
// precision here. Doing so, we need to take the means of the lower and upper values later to guarantee
// the original precision.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*lowerX, *upperX, storm::utility::convertNumber<ValueType>(2.0) * static_cast<ValueType>(this->getSettings().getPrecision()), this->getSettings().getRelativeTerminationCriterion());
if (lowerStep) {
terminate |= this->terminateNow(*lowerX, SolverGuarantee::GreaterOrEqual);
}
if (upperStep) {
terminate |= this->terminateNow(*upperX, SolverGuarantee::GreaterOrEqual);
}
}
// Set up next iteration.
++iterations;
doConvergenceCheck = !doConvergenceCheck;
}
// We take the means of the lower and upper bound so we guarantee the desired precision.
storm::utility::vector::applyPointwise(*lowerX, *upperX, *lowerX, [] (ValueType const& a, ValueType const& b) { return (a + b) / storm::utility::convertNumber<ValueType>(2.0); });
// Since we shuffled the pointer around, we need to write the actual results to the input/output vector x.
if (&x == tmp) {
std::swap(x, *tmp);
} else if (&x == this->cachedRowVector.get()) {
std::swap(x, *this->cachedRowVector);
}
if (!this->isCachingEnabled()) {
clearCache();
}
this->logIterations(converged, terminate, iterations);
return converged;
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::logIterations(bool converged, bool terminate, uint64_t iterations) const {
if (converged) {
STORM_LOG_INFO("Iterative solver converged in " << iterations << " iterations.");
} else if (terminate) {
STORM_LOG_INFO("Iterative solver terminated after " << iterations << " iterations.");
} else {
STORM_LOG_WARN("Iterative solver did not converge in " << iterations << " iterations.");
}
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::internalSolveEquations(std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::SOR || this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::GaussSeidel) {
return this->solveEquationsSOR(x, b, this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::SOR ? this->getSettings().getOmega() : storm::utility::one<ValueType>());
} else if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::Jacobi) {
return this->solveEquationsJacobi(x, b);
} else if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::WalkerChae) {
return this->solveEquationsWalkerChae(x, b);
} else if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::Power) {
if (this->getSettings().getForceSoundness()) {
return this->solveEquationsSoundPower(x, b);
} else {
return this->solveEquationsPower(x, b);
}
}
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unknown solving technique.");
return false;
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::multiply(std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<ValueType>& result) const {
if (&x != &result) {
multiplier.multAdd(*A, x, b, result);
} else {
// If the two vectors are aliases, we need to create a temporary.
if (!this->cachedRowVector) {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
multiplier.multAdd(*A, x, b, *this->cachedRowVector);
result.swap(*this->cachedRowVector);
if (!this->isCachingEnabled()) {
clearCache();
}
}
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::multiplyAndReduce(OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<ValueType>& result, std::vector<uint_fast64_t>* choices) const {
if (&x != &result) {
multiplier.multAddReduce(dir, rowGroupIndices, *A, x, b, result, choices);
} else {
// If the two vectors are aliases, we need to create a temporary.
if (!this->cachedRowVector) {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
multiplier.multAddReduce(dir, rowGroupIndices, *A, x, b, *this->cachedRowVector, choices);
result.swap(*this->cachedRowVector);
if (!this->isCachingEnabled()) {
clearCache();
}
}
}
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::supportsGaussSeidelMultiplication() const {
return true;
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::multiplyGaussSeidel(std::vector<ValueType>& x, std::vector<ValueType> const* b) const {
STORM_LOG_ASSERT(this->A->getRowCount() == this->A->getColumnCount(), "This function is only applicable for square matrices.");
multiplier.multAddGaussSeidelBackward(*A, x, b);
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::multiplyAndReduceGaussSeidel(OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<uint_fast64_t>* choices) const {
multiplier.multAddReduceGaussSeidelBackward(dir, rowGroupIndices, *A, x, b, choices);
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::setSettings(NativeLinearEquationSolverSettings<ValueType> const& newSettings) {
settings = newSettings;
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType> const& NativeLinearEquationSolver<ValueType>::getSettings() const {
return settings;
}
template<typename ValueType>
LinearEquationSolverProblemFormat NativeLinearEquationSolver<ValueType>::getEquationProblemFormat() const {
if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::Power) {
return LinearEquationSolverProblemFormat::FixedPointSystem;
} else {
return LinearEquationSolverProblemFormat::EquationSystem;
}
}
template<typename ValueType>
LinearEquationSolverRequirements NativeLinearEquationSolver<ValueType>::getRequirements() const {
LinearEquationSolverRequirements requirements;
if (this->getSettings().getForceSoundness()) {
if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::Power) {
requirements.requireBounds();
} else {
STORM_LOG_WARN("Forcing soundness, but selecting a method other than the power iteration is not supported.");
}
} else {
if (this->getSettings().getSolutionMethod() == NativeLinearEquationSolverSettings<ValueType>::SolutionMethod::Power) {
requirements.requireLowerBounds();
}
}
return requirements;
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::clearCache() const {
jacobiDecomposition.reset();
cachedRowVector2.reset();
walkerChaeData.reset();
LinearEquationSolver<ValueType>::clearCache();
}
template<typename ValueType>
uint64_t NativeLinearEquationSolver<ValueType>::getMatrixRowCount() const {
return this->A->getRowCount();
}
template<typename ValueType>
uint64_t NativeLinearEquationSolver<ValueType>::getMatrixColumnCount() const {
return this->A->getColumnCount();
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> NativeLinearEquationSolverFactory<ValueType>::create() const {
return std::make_unique<storm::solver::NativeLinearEquationSolver<ValueType>>(settings);
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType>& NativeLinearEquationSolverFactory<ValueType>::getSettings() {
return settings;
}
template<typename ValueType>
NativeLinearEquationSolverSettings<ValueType> const& NativeLinearEquationSolverFactory<ValueType>::getSettings() const {
return settings;
}
template<typename ValueType>
std::unique_ptr<LinearEquationSolverFactory<ValueType>> NativeLinearEquationSolverFactory<ValueType>::clone() const {
return std::make_unique<NativeLinearEquationSolverFactory<ValueType>>(*this);
}
// Explicitly instantiate the linear equation solver.
template class NativeLinearEquationSolverSettings<double>;
template class NativeLinearEquationSolver<double>;
template class NativeLinearEquationSolverFactory<double>;
}
}