You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
33 KiB
533 lines
33 KiB
#include "gtest/gtest.h"
|
|
#include "storm-config.h"
|
|
|
|
#include "src/logic/Formulas.h"
|
|
#include "src/utility/solver.h"
|
|
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
|
|
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
|
|
#include "src/settings/SettingsManager.h"
|
|
|
|
#include "src/settings/modules/GeneralSettings.h"
|
|
|
|
#include "src/settings/modules/NativeEquationSolverSettings.h"
|
|
#include "src/parser/AutoParser.h"
|
|
|
|
TEST(SparseMdpPrctlModelCheckerTest, Dice) {
|
|
std::shared_ptr<storm::models::sparse::Model<double>> abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew");
|
|
|
|
ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp);
|
|
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp = abstractModel->as<storm::models::sparse::Mdp<double>>();
|
|
|
|
ASSERT_EQ(mdp->getNumberOfStates(), 169ull);
|
|
ASSERT_EQ(mdp->getNumberOfTransitions(), 436ull);
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two");
|
|
auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
|
|
auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
|
|
|
|
result = checker.check(*maxProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three");
|
|
eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
|
|
minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
|
|
|
|
result = checker.check(*minProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
|
|
|
|
result = checker.check(*maxProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("four");
|
|
eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
|
|
minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
|
|
|
|
result = checker.check(*minProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
|
|
|
|
result = checker.check(*maxProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
|
|
auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
|
|
auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
|
|
|
|
result = checker.check(*minRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult7 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(7.333329499, quantitativeResult7[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
|
|
|
|
result = checker.check(*maxRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult8 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(7.333329499, quantitativeResult8[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", "");
|
|
|
|
ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp);
|
|
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> stateRewardMdp = abstractModel->as<storm::models::sparse::Mdp<double>>();
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> stateRewardModelChecker(*stateRewardMdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
|
|
reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
|
|
minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
|
|
|
|
result = stateRewardModelChecker.check(*minRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult9 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(7.333329499, quantitativeResult9[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
|
|
|
|
result = stateRewardModelChecker.check(*maxRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult10 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(7.333329499, quantitativeResult10[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew");
|
|
|
|
ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp);
|
|
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> stateAndTransitionRewardMdp = abstractModel->as<storm::models::sparse::Mdp<double>>();
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> stateAndTransitionRewardModelChecker(*stateAndTransitionRewardMdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
|
|
reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
|
|
minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
|
|
|
|
result = stateAndTransitionRewardModelChecker.check(*minRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult11 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(14.666658998, quantitativeResult11[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
|
|
|
|
result = stateAndTransitionRewardModelChecker.check(*maxRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult12 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(14.666658998, quantitativeResult12[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
|
|
TEST(SparseMdpPrctlModelCheckerTest, AsynchronousLeader) {
|
|
std::shared_ptr<storm::models::sparse::Model<double>> abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.tra", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.trans.rew");
|
|
|
|
ASSERT_EQ(storm::models::ModelType::Mdp, abstractModel->getType());
|
|
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp = abstractModel->as<storm::models::sparse::Mdp<double>>();
|
|
|
|
ASSERT_EQ(3172ull, mdp->getNumberOfStates());
|
|
ASSERT_EQ(7144ull, mdp->getNumberOfTransitions());
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
|
|
auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
|
|
auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
|
|
|
|
result = checker.check(*maxProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
|
|
auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true);
|
|
auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 25);
|
|
minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula);
|
|
|
|
result = checker.check(*minProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0625, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula);
|
|
|
|
result = checker.check(*maxProbabilityOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0625, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
|
|
auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
|
|
auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
|
|
|
|
result = checker.check(*minRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(4.285689611, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
|
|
|
|
result = checker.check(*maxRewardOperatorFormula);
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(4.285689611, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
|
|
TEST(SparseMdpPrctlModelCheckerTest, LRA_SingleMec) {
|
|
storm::storage::SparseMatrixBuilder<double> matrixBuilder;
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp;
|
|
|
|
{
|
|
matrixBuilder = storm::storage::SparseMatrixBuilder<double>(2, 2, 2);
|
|
matrixBuilder.addNextValue(0, 1, 1.);
|
|
matrixBuilder.addNextValue(1, 0, 1.);
|
|
storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build();
|
|
|
|
storm::models::sparse::StateLabeling ap(2);
|
|
ap.addLabel("a");
|
|
ap.addLabelToState("a", 1);
|
|
|
|
mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none));
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a");
|
|
auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
{
|
|
matrixBuilder = storm::storage::SparseMatrixBuilder<double>(2, 2, 4);
|
|
matrixBuilder.addNextValue(0, 0, .5);
|
|
matrixBuilder.addNextValue(0, 1, .5);
|
|
matrixBuilder.addNextValue(1, 0, .5);
|
|
matrixBuilder.addNextValue(1, 1, .5);
|
|
storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build();
|
|
|
|
storm::models::sparse::StateLabeling ap(2);
|
|
ap.addLabel("a");
|
|
ap.addLabelToState("a", 1);
|
|
|
|
mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none));
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a");
|
|
auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
|
|
{
|
|
matrixBuilder = storm::storage::SparseMatrixBuilder<double>(4, 3, 4, true, true, 3);
|
|
matrixBuilder.newRowGroup(0);
|
|
matrixBuilder.addNextValue(0, 1, 1);
|
|
matrixBuilder.newRowGroup(1);
|
|
matrixBuilder.addNextValue(1, 0, 1);
|
|
matrixBuilder.addNextValue(2, 2, 1);
|
|
matrixBuilder.newRowGroup(3);
|
|
matrixBuilder.addNextValue(3, 0, 1);
|
|
storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build();
|
|
|
|
storm::models::sparse::StateLabeling ap(3);
|
|
ap.addLabel("a");
|
|
ap.addLabelToState("a", 2);
|
|
ap.addLabel("b");
|
|
ap.addLabelToState("b", 0);
|
|
ap.addLabel("c");
|
|
ap.addLabelToState("c", 0);
|
|
ap.addLabelToState("c", 2);
|
|
|
|
mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none));
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a");
|
|
auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1. / 3., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1. / 3., quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1. / 3., quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("b");
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.5, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.5, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.5, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1. / 3., quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1. / 3., quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1. / 3., quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("c");
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(2. / 3., quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(2. / 3., quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(2. / 3., quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.5, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.5, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.5, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
}
|
|
|
|
TEST(SparseMdpPrctlModelCheckerTest, LRA) {
|
|
storm::storage::SparseMatrixBuilder<double> matrixBuilder;
|
|
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp;
|
|
|
|
{
|
|
matrixBuilder = storm::storage::SparseMatrixBuilder<double>(4, 3, 4, true, true, 3);
|
|
matrixBuilder.newRowGroup(0);
|
|
matrixBuilder.addNextValue(0, 1, 1);
|
|
matrixBuilder.newRowGroup(1);
|
|
matrixBuilder.addNextValue(1, 1, 1);
|
|
matrixBuilder.addNextValue(2, 2, 1);
|
|
matrixBuilder.newRowGroup(3);
|
|
matrixBuilder.addNextValue(3, 2, 1);
|
|
storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build();
|
|
|
|
storm::models::sparse::StateLabeling ap(3);
|
|
ap.addLabel("a");
|
|
ap.addLabelToState("a", 0);
|
|
ap.addLabel("b");
|
|
ap.addLabelToState("b", 1);
|
|
ap.addLabel("c");
|
|
ap.addLabelToState("c", 2);
|
|
|
|
mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none));
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a");
|
|
auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("b");
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1.0, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1.0, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("c");
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(1.0, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1.0, quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1.0, quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.0, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1.0, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
{
|
|
matrixBuilder = storm::storage::SparseMatrixBuilder<double>(22, 15, 28, true, true, 15);
|
|
matrixBuilder.newRowGroup(0);
|
|
matrixBuilder.addNextValue(0, 1, 1);
|
|
matrixBuilder.newRowGroup(1);
|
|
matrixBuilder.addNextValue(1, 0, 1);
|
|
matrixBuilder.addNextValue(2, 2, 1);
|
|
matrixBuilder.addNextValue(3, 4, 0.7);
|
|
matrixBuilder.addNextValue(3, 6, 0.3);
|
|
matrixBuilder.newRowGroup(4);
|
|
matrixBuilder.addNextValue(4, 0, 1);
|
|
|
|
matrixBuilder.newRowGroup(5);
|
|
matrixBuilder.addNextValue(5, 4, 1);
|
|
matrixBuilder.addNextValue(6, 5, 0.8);
|
|
matrixBuilder.addNextValue(6, 9, 0.2);
|
|
matrixBuilder.newRowGroup(7);
|
|
matrixBuilder.addNextValue(7, 3, 1);
|
|
matrixBuilder.addNextValue(8, 5, 1);
|
|
matrixBuilder.newRowGroup(9);
|
|
matrixBuilder.addNextValue(9, 3, 1);
|
|
|
|
matrixBuilder.newRowGroup(10);
|
|
matrixBuilder.addNextValue(10, 7, 1);
|
|
matrixBuilder.newRowGroup(11);
|
|
matrixBuilder.addNextValue(11, 6, 1);
|
|
matrixBuilder.addNextValue(12, 8, 1);
|
|
matrixBuilder.newRowGroup(13);
|
|
matrixBuilder.addNextValue(13, 6, 1);
|
|
|
|
matrixBuilder.newRowGroup(14);
|
|
matrixBuilder.addNextValue(14, 10, 1);
|
|
matrixBuilder.newRowGroup(15);
|
|
matrixBuilder.addNextValue(15, 9, 1);
|
|
matrixBuilder.addNextValue(16, 11, 1);
|
|
matrixBuilder.newRowGroup(17);
|
|
matrixBuilder.addNextValue(17, 9, 1);
|
|
|
|
matrixBuilder.newRowGroup(18);
|
|
matrixBuilder.addNextValue(18, 5, 0.4);
|
|
matrixBuilder.addNextValue(18, 8, 0.3);
|
|
matrixBuilder.addNextValue(18, 11, 0.3);
|
|
|
|
matrixBuilder.newRowGroup(19);
|
|
matrixBuilder.addNextValue(19, 7, 0.7);
|
|
matrixBuilder.addNextValue(19, 12, 0.3);
|
|
|
|
matrixBuilder.newRowGroup(20);
|
|
matrixBuilder.addNextValue(20, 12, 0.1);
|
|
matrixBuilder.addNextValue(20, 13, 0.9);
|
|
matrixBuilder.addNextValue(21, 12, 1);
|
|
|
|
storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build();
|
|
|
|
storm::models::sparse::StateLabeling ap(15);
|
|
ap.addLabel("a");
|
|
ap.addLabelToState("a", 1);
|
|
ap.addLabelToState("a", 4);
|
|
ap.addLabelToState("a", 5);
|
|
ap.addLabelToState("a", 7);
|
|
ap.addLabelToState("a", 11);
|
|
ap.addLabelToState("a", 13);
|
|
ap.addLabelToState("a", 14);
|
|
|
|
mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none));
|
|
|
|
storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>()));
|
|
|
|
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a");
|
|
auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula);
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(37./60., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(2./3., quantitativeResult1[3], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.5, quantitativeResult1[6], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1./3., quantitativeResult1[9], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(31./60., quantitativeResult1[12], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(101./200., quantitativeResult1[13], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(31./60., quantitativeResult1[14], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
|
|
lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula);
|
|
|
|
result = std::move(checker.check(*lraFormula));
|
|
storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>();
|
|
|
|
EXPECT_NEAR(0.3 / 3., quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[3], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(1./3., quantitativeResult2[6], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.0, quantitativeResult2[9], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.3 / 3., quantitativeResult2[12], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(.79 / 3., quantitativeResult2[13], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
EXPECT_NEAR(0.3 / 3., quantitativeResult2[14], storm::settings::nativeEquationSolverSettings().getPrecision());
|
|
}
|
|
}
|